

AC SERVO DRIVES

SJME SERVOMOTOR SJDE SERVOPACK

Swift and Sure

Junma-a true thoroughbred

With Yaskawa's world-leading servo drive technology, we are proud to introduce the Junma series for a wide range of applications. Following our policy to make user-friendly products, the Junma series is different from conventional models, because no more parameter settings and no more servo adjustments are required; therefore, the setup and test runs are greatly reduced. Also, the Junma series has the standard servo characteristics such as high response, high speed, high torque, and high accuracy.

Try Yaskawa's Junma series to improve your system so that it better suits your needs.

• Fast & Easy Setup

Settings are easy to make, so setup time is reduced.

Installation and wiring Connect the cables for the power supply, signal lines, and a motor.

bulse setting ince pulse switch ontroller. reeded. Setup completion The motor is ready to run with the reference from the controller. The required torque is possible even at a highspeed rotation of 4500 min⁻¹.

AC SERVO DRIVES JUNMA SERIES

System Configuration ·····	4
Selection of Devices ······	5
Servomotors ·····	8
SERVOPACKs······	10
Connection Diagram ······	14
	20
	20
Cables / Peripheral Devices ····	24
Selection of Servomotor Size · · ·	35
Connection to Host Controller ····	42
Product Standard Life ······	43
Terminology ·····	44
FAQs	45
Revision History	46

■Connection to Peripheral Devices

SERVOPACKs and Applicable Peripheral Devices

Rated	Servomotor		SEDVODACK	Power Supply Capacity	Current Capacity for Molded-case	Current Capacity and	Inrush Current		Magnetic	Noise Filter	Surge	AC Peactor	Regenerative									
output	Without brake	With brake	SENVUPACK	kVA	Arms*1,*2	Model of External Fuse	A0-P		Contactor	NOISE FIILEI	Protector	AC neactor	Unit									
100W	SJME-01AMA41	SJME-01AMA4C	SJDE-01APA	0.40						EN2070 6/07		X5052										
200W	SJME-02AMA41	SJME-02AMA4C	SJDE-02APA	0.75	4	0KLK015.T(15Arms)	30	HI-11J	1112070-0/07		X5053											
400W	SJME-04AMA41	SJME-04AMA4C	SJDE-04APA	1.2	8														FN2070-10/07	R.C.IN-601BQZ-4	X5054	JUSP-RG08D
750W	SJME-08AMA41	SJME-08AMA4C	SJDE-08APA	2.2	16	0KLK030.T (30Arms)	60		HI-15J	FN2070-16/07		X5056										
Manufacturer	Yaska	wa Electric Corpora	ition	_	_	Littelfuse Inc.	-		Yaskawa Controls Co., Ltd.	Schaffner Electronic	Okaya Electric Industries Co., Ltd.	Yaskawa Controls Co., Ltd.	Yaskawa Electric Corporation									
Contact ^{*3}	YASH (SHA	(AWA ELECTRIC ANGHAI) CO.,LTD		-	-	KUNSHAN FUJIX IMPORT AND EXPORT TRADE CO.,LTD.	_		YASKAWA ELECTRIC (SHANGHAI) CO.,LTD	Schaffner EMC Ltd.Shanghai	OKAYA HONG KONG TRADING LIMITED.	YASKAWA (SHANGHA	ELECTRIC AI) CO.,LTD									

*1: Typical value at the rated load. The specified derating is required to select the appropriate capacity of molded-case circuit breaker.

*2: Operating characteristics (25°C): 200% two seconds min. and 700% 0.01 seconds min.

*3: Refer to the list on page 34 for contact information.

Note: The ground protection circuit is designed for ground fault inside the motor windings while the motor is running.

Therefore, it may not protect the system under the following conditions. • A low-resistance ground fault occurs between the main circuit cable and connector for the servomotor.

• The power supply is turned ON during a ground fault.

To configure a safer system, install an earth leakage breaker to protect against both overloads and shortcircuits, or install an earth leakage breaker for ground protection and a molded-case circuit breaker.

Selection of Devices

■Cables and Connectors

Name		Type/Model	Length	Specifications	Manufacturer	Contact*4	
Servomotor main	No broko	JZSP-CHM000-05	5m				
circuit cables with	NO DIAKE	JZSP-CHM000-10	10m		Fujix	KUNSHAN FUJIX	
connectors at both	With brakes	JZSP-CHM030-05	5m		Co., Ltd	EXPORT TRADE	
ends (for relay)***	With blakes	JZSP-CHM030-10	10m	87			
Connectors for servomotor main circuit cables ^{*2}	Motor end	• Crimp type ^{*3} Receptacle: 5557-06R-210 Terminal: 5556T(chained) or 5556TL(detached)	_	Ē	Molex Japan Co., Ltd	 Shanghai Molex Interconnect (Shanghai) Co.,Ltd Shenzhen Molex Hong Kong China Ltd., Shenzhen Office 	
	SERVOPACK end (for CNB)	Spring type Receptacle: 04JFAT-SAYGF-N	_			①Shanghai	
Tool to remove wires	*2	J-FAT-OT	_	P	JST. Mfg. Co., Ltd.	CO.,LTD.	
Connectors for battery case/ regenerative unit*2	For CNA	Spring type Receptacle: 04JFAT-SBXGF-N				@Hong Kong J.S.T (H.K.) CO.,LTD.	
Encoder cables with o	connectors	JZSP-CHP800-05	5m		Sun-Wa	SHANGHAI SUN-WA	
at both ends (for relay	/)*1	JZSP-CHP800-10	10m		Corporation	TECHNOS CO.,LTD	
	Motor end	Crimp type ^{*3} Receptacle: 5557-12R-210 Terminal: 5556T2(chained) or 5556T2L(detached)	_	Ē	Molex Japan Co., Ltd	①Shanghai Molex Interconnect	
Connectors for encoder cables ^{*2}		 Crimp type(gray)*3 Plug and cable cover set: 54599-1005 Plug housing: 51209-1001 Crimp terminal: 59351-8087(chained) or 59351-8187(detached) 	_			(Shanghai) Co.,Ltd ②Shenzhen Molex Hong Kong China Ltd., Shenzhen Office	
	end (for CN2)	Soldered type (gray) Plug and cable cover set: 54599-1005 Plug connector: 54593-1011	_				
		Soldered type (black) Shell kit: 36310-3200-008 Receptacle: 36210-0100JL	_		Sumitomo 3M Ltd.		
		JZSP-CHI003-01	1m	dD	Sun-Wa		
Cables for I/O signals	;	JZSP-CHI003-02	2m	j==≤	Technos	TECHNOS CO.,LTD	
		JZSP-CHI003-03	3m		Corporation		
Connectors for I/O sig (for CN1)*2	gnals	Soldered type Shell kit: 10314-52A0-008 Plug: 10114-3000VE			Sumitomo 3M Ltd.		

*1: Contact your Yaskawa representative for the servomotor main circuit or the encoder cables of 3m, 15m, and 20m. *2: Connectors for CNA, CNB, CN1, and CN2 are sold separately.

*3: Refer to page 27 for a list of models of crimping tools

*4: Refer to the list on page 34 for contact information.

System Configuration

Connectors at the motor end are also sold separately. The customer must provide these connectors.

■Precautions when Selecting Peripheral Devices

Regenerative Units

The rotational energy of driven machines, including servomotor, is returned to the SERVOPACK as electric power. This is called regenerative power. The power is absorbed by the smoothing capacitor. When the capacitor has reached its limit in power absorption, the excess is then consumed by the regenerative unit.

The servomotor is driven in the regeneration state in the following circumstances:

- While decelerating to a stop during acceleration and deceleration operation.
- During continuous operation on the vertical axis.
- During continuous operation with the servomotor rotated from the load side (negative load).

<Allowable Load Inertia Moment and Allowable Regenerative Frequency with Regenerative Unit >

The graphs below show the capacity absorbed regenerative energy and allowable regenerative frequency of the SERVOPACKs with regenerative units connected. The graphs show values for horizontal axis. For the vertical axis, refer to the JunmaSize+: AC

Note: An overvoltage alarm will occur without a required regenerative unit.

<Caution>

- Do not touch the regenerative units as they reach high temperatures. Use heat-resistant, nonflammable wiring and make sure that the wiring does not touch the units. For connecting wire size when connecting a unit, refer to P16.
- The regenerative unit has three error detection functions: regenerative resistor burnout, regenerative transistor failure, and overvoltage detection. When these functions are tripped, the built-in alarm relay will operate and the C1 and C2 output terminals of the regenerative unit will be opened.
- Construct a sequence so that the power supply (through L1 and L2) to the SERVOPACK will be always shut OFF when the alarm relay operates. Two to three seconds are required to reset the alarm relay once the alarm relay operates. The alarm state will return to normal when the main capacitor in the SERVOPACK finishes discharging.

Molded-case Circuit Breaker (MCCB)

If selecting a molded-case circuit breaker, observe the following precautions.

<Maximum Input Current >

- The instantaneous maximum output of SERVOPACK is approximately 3 times the rated output. The output can last up to 3 seconds. Accordingly, select a molded-case circuit breaker whose breaking time is 5 seconds or more at 300% of SERVOPACK rated current. The general-purpose low-speed acting molded-case circuit breakers are applicable.
- The consumption of other controllers must be considered when selecting a molded-case circuit breaker.
- The power-supply capacity per SERVOPACK when using a servomotor is described in **SERVOPACKs** and Applicable Peripheral Devices on page 4. If using several SERVOPACKs, select a molded-case circuit breaker with a capacity larger than the effective load current, which is calculated from the total power supply capacity.

< Inrush Current >

- The allowable inrush current for a low-speed acting molded-case circuit breaker is approximately 10 times the rated current for 0.02 seconds.
- If several SERVOPACKs are being used at the same time, select a molded-case circuit breaker with an allowable current (20 ms) greater than the total inrush current of the SERVOPACK.
- Refer to SERVOPACKs and Applicable Peripheral Devices on page 4 for more information on the SERVOPACK's inrush current.

• Earth Leakage Breaker

- It is recommended to use a general-purpose circuit breaker of the rated current 200 mA or more, or a circuit breaker for inverters (for high-frequency).
- High-frequency current may leak through the armature of a servomotor when switching in the SERVOPACKs.

Magnetic Contactor

A magnetic contactor is required to make the AC power to SERVOPACK ON/OFF sequence externally. Be sure to attach a spark killer to the excitation coil of the magnetic contactor.

Noise Filter

- Install a noise filter on the power supply line for peripheral equipment as necessary.
- Use a noise filter to prevent noise interference. If the equipment is to be used near private houses or may receive noise interference, install a noise filter on the input side of the power supply line. Because the SJDE SERVOPACK is designed as an industrial device, it provides no mechanism to prevent noise interference.
- Install the input reference device and noise filter as close to the SERVOPACK as possible.

Servomotors

Ratings and Specifications

Voltage			200	VAC				
Servomotor Model:	SJME-□□A	01	02	04	08	Description		
Applicable SERVOPACK	SJDE-□□A	01	02	04	08	-		
Rated Output*1	W	100	200	400	750	Motor output at the rated operating point		
Rated Torque*1,*2	N∙m	0.318	0.637	1.27	2.39	Torque at the rated operating point		
Instantaneous Peak Torque*1	N∙m	0.955	1.91	3.82	7.16	Maximum instantaneous torque of the motor		
Rated Current*1	Arms	0.84	1.1	2.0	3.7	Current flowing to the motor at the rated operating point		
Instantaneous Max. Current*1	Arms	2.5	3.3	6.0	11.1	Maximum instantaneous current that is allowed to flow to the motor		
Rated Speed*1	min ⁻¹		30	00		Speed at the rated operating point		
Max. Speed*1	min ⁻¹		45	00		Highest possible speed		
Torque Constant	N•m/Arms	0.413	0.645	0.682	0.699	Generated torque ratio for current flowing to the motor		
Rotor Moment of Inertia	kg⋅m²×10-4	0.0634	0.330	0.603	1.50	Inertia moment at the rotor shaft		
Rated Power Rate*1	kw/s	16.0	12.3	26.7	38.1	Motor output per unit time		
Rated Angular Acceleration*1	rad/s ²	50200	19300	21100	15900	The theoretical angular acceleration(also called torque-to- inertia ratio) at the rated torque		
Time Rating			Conti	nuous	-	"Continuous rating" means that the temperature of the servomotor in continuous operation under specified conditions will not exceed a specified temperature or other limitation.		
Thermal Class			E	3		Highest allowable temperature for armature winding: 130°C		
Vibration Class			15µm c	r below		The maximum vibration amplitude of the motor expressed in units of micrometers on the condition that the vibration is measured with a vibrometer parallel to the shaft and in two directions perpendicular to the shaft.		
Withstand Voltage			1500 VAC fo	r one minute		-		
Insulation Resistar	nce		500 VDC, ⁻	10 M Ω min.		-		
Enclosure		Totally enclosed, s	elf-cooled, IP55 (ex	cluding shaft opening	ng and connectors)	Level of protection from dust and water drops		
Impact Resistance		Impact acceler side to side, ar Impact occu	ration: 490 m/s ² nd front to back rrences: 2	in three directi	ons — vertical,	Impact resistance of the motor in three directions (up and down, left and right, and back and forth) with the motor shaft mounted horizontally		
Vibration Resistan	се	Vibration ac	celeration: 49) m/s² in three	e directions ick.	Vibration resistance of the motor in three directions (up and down, left and right, and back and forth) with the motor shaft mounted horizontally		

*1: These items and speed/torque characteristics quoted in combination with an SJDE SERVOPACK are at an armature winding temperature of 100°C. Other values quoted at 20°C.
 *2: The rated torques listed here are the values for the continuous allowable torque at 40°C with an aluminum heatsink

(250 mm × 250 mm × 6 mm) attached

Holding Brake Specifications

Servomotor Model:SJ	01	02	04	08	Description			
Rated Voltage			24 VD0	C ±10%		-		
Holding Brake Moment of Inertia*	kg•m ² ×10 ⁻⁴	0.0075	0.0)64	0.171	_		
Capacity	W	6	6.9		6.9 7.7		7.7	_
Min. Holding Torque (Static Friction Torque)	N∙m	0.318	1.:	27	2.39	Torque against an external force to hold the shaft		
Coil Resistance	Ω(at 20°C)	96	8	3	75	Resistance of the built-in coil in the brake		
Rated Current	A(at 20°C)	0.25	0.25 0.29		0.32	Current that flows when the brake is released		
Brake Release Time	ms	80 max.				Time from when the power for the holding brake is turned on until the brake is released.		
Rise Time for Holding Torque	ms		100 max.			Time from when the power for the holding brake is turned off until the brake reaches the set torque.		

*: To obtain the motor moment of inertia with a brake, add the holding brake moment of inertia to the rotor moment of inertia. The rated power rate and angular acceleration of the motor will change according to the motor moment of inertia.

Notes: 1 The holding brake is only used to hold the load and cannot be used to stop the servomotor.

2 Do not use the holding brake when the servo is on. Failure to observe this caution may result in an overload in the SERVOPACK or a decrease in the brake life.

■ Speed / Torque Characteristics How to Read a Gragh of Speed and Torque Characteristics

■Dimensions Units: mm

• 100W

Type SJME-	L	LL	Approx. Mass kg
01AMA41	119	94	0.5
01AMA4C	164	139	0.8

Μ	Motor Connector Specifications								
	654	Plug: 5559-06P Terminal (N 5558T(ch Grounding 30490-20 30490-20 (Manufac	2-210 lo.1 to 3, s ained) or s Pin (No.4) 02(chaine 12 (detacl ture: Mole	5, 6): 5558TL(detached) : d) or red) x Japan Co., Ltd)					
	No	brake	Witl	n brake					
1	Phase II	Pod	Phase II	Rod					

	No	brake	With brake			
1	Phase U	Red	Phase U	Red		
2	Phase V	White	Phase V	White		
3	Phase W	Blue	Phase W	Blue		
4	FG	Green/Yellow	FG	Green/Yellow		
5	-	-	Brake	Red		
6	-	-	Brake	Black		

Encoder Connector Specifications

Ę

FG

121110987 654321	Plug: 5559-1 Terminal 555872 555872 (Manuf	2P-210 : 2(chained) or 2.(detached) acture: Molex Japan Co., Ltd)
PG5V	Red	
PG0V(GND)	Black	
Phase A+	Blue	
Phase A-	Blue/White	
Phase B+	Yellow	
Phase B-	Yellow/White	
Phase /Z	Purple	
Phase U	Gray	
Phase V	Green	
Phase W	Orange	

Shield

• 200W to 750W

Type SJME-	L	LL	LR	LG	LE	S	LB	LC	LD	LF	LA	LZ	QK	Approx. Mass kg				
02AMA41	125.5	95.5																0.9
02AMA4C	165.5	135.5			~	3 14 ⁰ -0.011	FO 0	0 00			70	5.5	20	1.5				
04AMA41	148.5	118.5	30	6	3		50 -0.039	60						1.3				
04AMA4C	188.5	158.5							_					1.9				
08AMA41	173	133	40	40	40	40	40	0	2	160	70 ⁰	00	25	05 00	00	7	20	2.6
08AMA4C	216	176	40	8	3	10-0.011	/ U _{-0.046}	0.046 00	00 35	20	90		30	3.5				

Ratings and Specifications

S	ERVOPACK	model SJDE-	01APA	02APA	04APA	08APA	Description		
Ma cap	x. applicable acity [kW]	servomotor	0.1	0.2	0.4	0.75	Motor capacity that the SERVOPACK can drive.		
Cor [Ari	ntinuous outp ms]	out current	0.84	1.1	2.0	3.7	Current that the SERVOPACK can output continuously.		
Inst out	tantaneous n put current [/	nax. Arms]	2.5	3.3	6.0	11.1	Maximum current that the SERVOPACK can output instantaneously.		
Innu	t nower oundly	Voltage	Single-pha	se 200 V to 2	30 VAC, +10	% to −15%	-		
(for	main circuit	Frequency		50/60H	lz ±5%	I	-		
and	control circuit)	Capacity at rated output [kVA]	^{.d} 0.40 0.75 1.2 2.2				Power supply capacity required to operate a motor at the rated output.		
Pov	ver loss at rate	ed output [W]	14	16	24	35	Electric power emitted as heat from the SERVOPACK while operating the motor at the rated torque and rated speed.		
Inp	ut control me	ethod	Capacitor-in rectification currents.	put type, sing with resistan	gle-phase full ce to prevent	-wave inrush	_		
Out	tput control n	nethod	PWM contro	l, sine wave	ower driven	system	-		
Fee	edback		Analog outp	ut encoder			Speed or position detector fixed on the motor shaft opposite the load side.		
Allo	wable load i	nertia [kgm ²]*1	0.6×10 ⁻⁴	3×10 ⁻⁴	5×10 ⁻⁴	10×10 ⁻⁴	Maximum allowable moment of inertia converted into the moment of inertia at the motor shaft of the machine.		
	Input signal for referenc Designated	Pulse type	Select one of 1. CCW + C 2. Sign + pu 3. CCW + C 4. Sign + pu	of the followir W Ilse train W (logic reve Ilse train (logi	ng signals: Prsal) c reversal)		Type of pulse train signal to drive motor, input into the SERVOPACK. For CCW+CW, input both forward and reverse rotation pulse trains.		
Signals	pulse type and pulse resolution with PULSE switch.	Pulse resolution	Select one of 1. 1000 puls (Open co 2. 2500 puls (Open co 3. 5000 puls 4. 10000 pu	of the followin ses/rev illector/line dr ses/rev illector/line dr ses/rev (Line Ises/rev (Line	ig signals: iver) 75 kpps iver) 187.5 kj driver) 375 kj è driver) 750	max. ops max. ops max. kpps max.	Number of reference pulses required to rotate the motor one turn		
Ni	Clear input	signal	Clears the p	ositioning err	or when turn	ed ON.	-		
2	Servo ON input signal		Turns the se	ervomotor on	or off.		-		
	Alarm output signal		OFF if an al Note: OFF for 2	arm occurs. 2s when power i	s turned ON.		_		
	Brake outpu	ıt signal	External sig Turn ON to	nal to control release the b	brakes. rake.		-		
	Positioning completed of	output signal	ON if the cu position ± 10	rrent position) pulses.	is equal to th	ne reference	-		
	Origin outpu	ut signal	ON if the mo Note: Use the p to ON.	otor is at the opulse edge that	origin. (Width changes the sign	: 1/500 rev) nal from OFF	Only one point of origin per rotation		
	Dynamic br	ake (DB)	Operated at OFF. (OFF after m	main power otor stops; Ol	OFF, servo a N if the motor	larm, servo power is off.)	Method that stops the motor by short-circuiting the internal circuit of the SERVOPACK.		
unctions	Regenerativ	ve processing	Optional (If the regen regenerative	erated energ e unit.)	y is too large	, install a	Function to consume rotational power generated when the motor is rotated by external force. This function is required for a high load moment of inertia.		
Built-in fu	Protection*	2	Speed error errors, over cooling fan, Note: No built-i	s, overload, e currents, disa system error n circuit for grou	encoder error blement of th s. Ind protection.	s, voltage le built-in	_		
	LED display	/	5 (PWR, RE	F, AL1, AL2,	AL3)		-		
	Reference f	ilter	Select one of	of eight levels	with FIL swit	ch.	-		
Co	oling method		Forced cool	ing (built-in fa	ın)		-		
Op	erating temp	erature	0°C to +55°C)			-		
Op	erating humi	dity	90% RH or	ess (with no	condensatior	ı)	-		
Storage temperature			-20°C to +7			<u>,</u>	-		
Sto	rage numidit	У	90% RH or	ess (with no	condensation	1)	-		
Installation site			 Free of col Free of dual Clean and 	rosive gases st and iron po dry	owder		_		
Altitude			1000 m or b	elow					
Vib	ration resista	ince	4.9m/s ²				-		
Sho	ock resistanc	e	19.6m/s ²				_		
Op	erating condi	tions	Installation of Pollution de Pollution de Protection c	category (ove gree: 2 lass: IP1X (E	rvoltage cate N50178)	gory): ∏	_		

*1: Be sure to use the motor with in the allowable load inertia moment. The operation of the motor will become unstable if the allowable load Inertia moment is exceeded.
*2: The ground protection circuit is designed for ground fault inside the motor windings while the motor is running. Therefore, it may not protect the system under the following conditions.
• A low-resistance ground fault occurs in the main circuit cable or in the connector of the cable for the servomotor.
• The power supply is turned ON during a ground fault. To configure a safer system install an earth leading therefore to protect against both overloads and shorteirquits of the server of t

To configure a safer system, install an earth leakage breaker to protect against both overloads and shortcircuits, or install an earth leakage breaker for ground protection and a molded-case circuit breaker. 10

Part Names and Functions

SERVOPACKs

Reference Pulse Setting (PULSE)

Pulse Setting Value	Reference Pulse Resolution (P/REV)	Reference Pulse Connection Method	Reference Pulse Type
0	1000	Open collector	CW + CCW
1	2500	or line driver	Positive logic
2	5000	l ine driver	cw
3	10000	Line driver	
4	1000	Open collector	CW + CCW
5	2500	or line driver	Negative logic
6	5000	Line driver	cw 11
7	10000	Line driver	ccm
8	1000	Open collector	Sign + pulse sequence,
9	2500	or line driver	Positive logic
Α	5000	Line driver	
В	10000	Line driver	SIGN
С	1000	Open collector	Sign + pulse sequence,
D	2500	or line driver	Negative logic
E	5000	Line driver	PULS
F	10000	Line driver	SIGN

Notes: 1 Make settings after turning OFF the power. 2 The factory setting is 0.

• Reference Filter Setting (FIL)

Filter Setting Value ^{*1}	Acceleration/ Deceleration Time for Step Reference*4	Time between Set Reference and Completed Positioning (Settling Time)*3	Description
0*2	45ms	100 to 200ms	▲ Small filter time
1	50ms	110 to 220ms	constant (short
2	60ms	130 to 260ms	positioning time)
3	65ms	150 to 300ms	
4	70ms	170 to 340ms	Large filter time
5	80ms	200 to 400ms	(little vibration
6	85ms	250 to 500ms	with a long
7	170ms	500 to 1000ms	 positioning time)
8 to F	Do not :	set 8 through F.	

*1: If the machine vibrates when starting or stopping the machine, set a larger value.
*2: The factory setting is 0. Not necessary to change this value

unless machine vibrates.

*3: The value changes depending on conditions such as the level of command acceleration and deceleration, the rigidity of the motor drive of the machine, and the motor resolution.

*4: Select the appropriate servomotor capacity with these values if using a step reference without any acceleration or deceleration time.

• Reference (REF)

Indicators*	Motor Power	Reference Pulses
Lit orange.	OFF	—
Blinks orange.	OFF	Input
Lit green.	ON	—
Blinks green.	ON	Input

*: Lit yellow for 1 s when the clear signal is input.

• Alarm (AL1, AL2, and AL3)

: Lit : OFF

Indicators	Meaning of Alarm	Indicators	Meaning of Alarm
AL1 AL2 AL3	Normal	AL1 AL2 AL3	Overcurrent
AL1 AL2 AL3	Speed error	AL1 🗌 AL2 📕 AL3 📕	Cooling fan in SERVOPACK stopped
AL1 AL2 AL3	Overload	AL1 AL2 AL3	System error
AL1 AL2 AL3	Encoder error	AL1	Rotary switch for reference pulse setting (PULSE) changed.
AL1 [] AL2 [] AL3 []	Voltage error		

Connector for Power Supply/ Regenerative Unit (CNA)

Pin No.	Symbol	Signal Name	1 🗊
1	L1	Power supply	2 1
2	L2	input terminals	3
3	+	Regenerative unit	4
4	-	connection terminals	

Connector for Motor Main Circuit Cable (CNB)

Pin No.	Symbol	Signal Name
1	U	Phase U
2	V	Phase V
3	W	Phase W
4	-	Not used

• I/O Signal Connector (CN1)

Pin No.	I/O	Symbol	Signal Name	Pin No.	I/O	Symbol	Signal Name
1	Input	CW, PULS	Reverse rotation pulse,	8	Input	CLR	Position error
2	Input	/CW, /PULS	reference pulse	9	Input	/CLR	pulse clear
3	Input	CCW, SIGN	Forward rotation pulse,	10	Output	PCO	Phase-C signal
4	Input	/CCW, /SIGN	reference sign	11	Output	SG-PCO	Phase-C signal ground
5	Input	+24VIN	External input power supply	12	Output	ALM	Servo alarm
6	Input	/S-ON	Servo ON	13	Output	/BK	Brake
7	Output	SG-COM	Output signal ground	14	Output	/COIN	Positioning completed
				Shell	-	-	FG

14 9 0

• Encoder Connector (CN2)

Pin No.	Symbol	Signal Name	Pin No.	Symbol	Signal Name
1	PG5V	PG power supply +5 V	6	B-	Phase B-
2	PG0V	PG power supply 0 V	7	/Z	Phase /Z
3	A+	Phase A+	8	U	Phase U
4	A-	Phase A-	9	V	Phase V
5	B+	Phase B+	10	W	Phase W

SERVOPACKs

■Example

AVR2: 24-VDC power supply for sequence SW1 :Power OFF switch	Spark killer	Okaya Electric Industries Co., Ltd	d.:CRE-50500
SW2 : Power ON switch MC1 : Magnetic contactor	Flywheel diode	Toshiba Corp.:	1NH42
Ry1 : Relay for brake	Relay for brake	Omron Corp.:	MY series
	Varistor	Nippon Chemi-Con Corp.:	TNR7V121K

2 The ground protection circuit is designed for ground fault inside the motor windings while the motor is running.

A low-resistance ground fault occurs between the main circuit cable and connector for the servomotor.
A low-resistance ground fault occurs between the main circuit cable and connector for the servomotor.
The power supply is turned ON during a ground fault.
To configure a safer system, install an earth leakage breaker to protect against both overloads and shortcircuits, or install an earth leakage breaker for ground protection and a molded-case circuit breaker.

■Main Circuit Wiring

- SJDE SERVOPACKs are suitable where the power supply is less than 5000 Arms (230 V rms max.).
- SERVOPACKs must be used with UL-listed fuses or circuit breakers, in accordance with the National Electrical Code (NEC).
- Use 75 °C heat-resistant copper wires or an equivalent.

SERVOPACK Main Circuit Wire Size and Tightning Torque

• Cable Types

Cable Types		Allowable
Symbol	Name	Temperature
PVC	Normal vinyl cable	-
IV	600-V vinyl cable	60°C
HIV	Temperature-resistant vinyl cable	75°C

- Wire sizes are selected for three cables per bundle at 40 °C ambient temperature with the rated current.
- Use cables with a minimum withstand voltage of 600 V for main circuits.
- If cables are bundled in PVC or metal ducts, consider the reduction ratio of the allowable current. Use heat-resistant cables under high ambient or panel temperatures where normal vinyl cables
- will rapidly deteriorate.Do not use cables under continuous regenerative state.

The following table shows the wire size and allowable current for three cables. Use a cable whose specifications meet or are less than the values in the table.

AWG Size	Nominal Cross Section Diameter	Configuration Number of	Conductive Resistance	Allowable Current at Ambient Temperature A		
	mm ²	wires/mm ²	Ω /mm	30°C	40°C	50°C
20	0.5	19/0.18	39.5	6.6	5.6	4.5
—	0.75	30/0.18	26.0	8.8	7.0	5.5
18	0.9	37/0.18	24.4	9.0	7.7	6.0
16	1.25	50/0.18	15.6	12.0	11.0	8.5
14	2.0	7/0.6	9.53	23	20	16

• 600-V Heat-resistant Vinyl Cables (HIV)

Note: The values in the table are only for reference.

• Power Supply Input Terminals (L1, L2), Motor Connection Terminals (U, V, W), and Regenerative Unit Connection Terminals (+, –)

Capacity	SERVOPACK	1	Ferminal Symbol	
W	Туре	L1, L2	U, V, W	+, -
100	SJDE-01A	111/105 mm ²	_	_
200	SJDE-02A		HIV1.25mm ²	HIV1.25mm ²
400	SJDE-04A	$HIV2.0mm^2$	Wiring length:	Wiring length:
750	SJDE-08A		20 III IIIax.	0.0 11 114.

Note: Connectors are used for all wiring.

• Ground Terminal ())

Wire Size	Terminal Screw Size	Tightening Torque
HIV 2.0 mm ² min.	M4	1.2 to 1.4N ⋅m

<Signal Line Wire Sizes>

The following wires are used for the CN1 and CN2 connectors on the SERVOPACK.

Connector Name and Symbol		Item	Specifications
		Cable	Use twisted-pair wires or shielded twisted-pair
		Cable	wires.
I/O signal	CNI	Maximum cable length	3m
connector	CINT	Applicable wires	AWG24(0.2 mm ²), AWG26(0.12 mm ²),
		Applicable wires	AWG28(0.08 mm ²)
		Finished cable outer diameter	8 mm dia. max.
	CN2	Cable	Use the cables specified by Yaskawa or use
			shielded twisted-pair wires.
		Maximum cable length	20m
Encoder signal			AWG22 (0.33 mm ²) and AWG26 (0.12 mm ²)
connector		Applicable wires	Used AWG22 for the encoder power supply and
			AWG26 for signal lines.
		Finished cable outer diameter	9 mm dia. max.

- Only an electrical engineer should perform the wiring.
- Design the circuit so that both the /S-ON signal and the main-circuit power supply turn OFF at an emergency stop.
- An overtravel function is not provided for the SERVOPACK. To configure a safer system, include a function so that the /S-ON signal will turn OFF when the limit switch is activated.
- If the servomotor is used to drive a vertical axis, install a safety device such as a counterweight to prevent the workpiece from falling down when an alarm occurs. Failure to observe this precaution may result in injury or damage to the equipment from fallen workpieces.
- Use a molded-case circuit breaker and fuse to protect the power supply line from high voltage. The SJDE SERVOPACK connects directly to a commercial power supply without a transformer, so always use a circuit breaker and fuse to protect the SERVOPACK from accidental high voltage.
- The ground protection circuit is designed for ground fault inside the motor windings while the motor is running. Therefore, it may not protect the system under the following conditions.
 - \cdot A low-resistance ground fault occurs between the main circuit cable and connector for the servomotor.
 - \cdot The power supply is turned ON during a ground fault.

To configure a safer system, install an earth leakage breaker to protect against both overloads and shortcircuits, or install an earth leakage breaker for ground protection and a molded-case circuit breaker.

- The distance between a power line (such as a power supply line or servomotor cable) and a signal line must be at least 30 cm. Do not put the power and signal lines in the same duct, and do not bundle them together.
- The longer a pulse line is, the lower the maximum frequency of the line is.
- Customers must purchase a 24 VDC power supply with double-shielded enclosure.
- Install an interlock system in the circuit to avoid any accident when opening or closing the machine's protective cover.

• Caution for Grounding

- To ground a SERVOPACK, follow these conditions.
 - \cdot Use as thick a cable as possible (HIV 2.0 mm² or thicker) for grounding.
 - \cdot A ground resistance of 100 Ω or less is recommended.
 - \cdot Ground to one point only.

• Caution for Cable

- For wiring, use the specified cables. Use cables that are as short as possible.
- Do not bend exessively or apply tension to cables. The conductor of a signal cable is very thin (0.08 to 0.12 mm²), so handle the cables carefully.

Explanation of I/O Signals

Pulse train references are given to control the position of the servomotor. The following pulse train output forms are supported from the host controller.

- Line driver output
- +24-V open-collector output
- +12-V open-collector output
- +5-V open-collector output

• I/O Signal Timing Examples

Connection Diagram

■Connection Examples of Input Signal

• Line Driver Output

Applicable line driver: SN75174 or MC3487 (Manufactured by Texas Instruments or equivalent)

*: ≠ Twisted-pair wires

Open-collector Output

Set the R1 through R3 current limit resistors so that input current (i) will fall within the following range. Input current (i) = 7 mA to 15 mA

Examples:

- When Vcc is +24 V: R1 through R3 = 2.2 k Ω
- When Vcc is +12 V: R1 through R3 = 1 k Ω
- When Vcc is +5 V: R1 through R3 = 180 Ω
 Note: The following signal logic applies for an open-collector output.

Tr1 to Tr3 ON	Equivalent to high level input
Tr1 to Tr3 OFF	Equivalent to low level input

 $*: \neq$ Twisted-pair wires

■Connection Example of Output Signal

Set the load so that the output current (i) will fall within 50 mA or less.

Photocoupler output (per output signal)

- Max. voltage: 30 VDC
- Max. current: 50 mADC

Servomotor Installation

Precautions

The service life of the servomotor will be shortened or unexpected problems will occur if the servomotor is installed incorrectly or in an inappropriate location. Always observe the precautions in this section when installing a servomotor.

- If the relay cables are connected to the motor, be sure to connect the end for the servomotor's main-circuit cables before connecting the end for the encoder cable. If the encoder cable's end is connected first, the encoder may become damaged because of the voltage differences between the Frame Ground (FG) pins on the servomotor and the grounding terminal of the SERVOPACK.
- If using cables that are not made by Yaskawa, ensure that connector pins and cables are correctly configured.
- Make sure there is no foreign matter (such as dust and metal chips) in the connector before connecting.
- When handling a servomotor with its cables connected, hold the servomotor or the connectors and cables will be damaged.

Environment	Environment
Operating temperature	0°C to +40°C without freezing
Operating humidity	20% to 80%RH with no condensation
Installation sites	• Indoors
	 Free of corrosive or explosive gases
	 Well-ventilated and free of dust and moisture
	 Facilitates inspection and cleaning
Storage conditions	If the power cable is disconnected, store the motor under these conditions.
	Temperature: -20°C to +60°C without freezing
	Humidity: 20% to 80%RH with no condensation
Altitude	1000 m or below above sea level

• Installation Conditions

Note: Do not directly connect the servomotor to a commercial power line. This will damage the servomotor.

Waterproof Specifications

The protective structure of the servomotors is designed with an IP55 rating.

- The servomotor can be used in a location that is subject to water drops, except for the connector and the section where the shaft passes through.
- Do not use the servomotor in a location that is subject to oil mist.

Direction of Servomotor Rotation

Positive rotation of the servomotor is counterclockwise when viewed from the load.

Installation Direction

- The motor can be installed horizontally or vertically. If the motor is mounted vertically, provide a cable trap so that water drops do not enter the motor. If the motor is installed with the axis pointing up, take preventative measures so that oil does not splash on
- the motor from other parts of the machine such as the gearbox.
 Do not bend or pull excessively any cables, the lead openings, and the junctions of the cables. The cores in the encoder cable and the brake signal line in the main circuit cable are only 0.2 mm² or 0.3
- mm². Be sure to protect them from stress.

Installation Method

• The end of the motor shaft is coated with an anticorrosive coating. Thoroughly remove the coating prior to installation, or it will not be possible to couple the motor to the mechanical system.

• Use the mounting holes (two for 100-W models and four for 200- to 750-W models) on the motor installation surface to secure the motor.

• Do not apply shock directly to the output shaft or encoder when mounting the motor, because the servomotor shaft is directly coupled to the encoder. The encoder may be damaged by the shock.

<Precautions>

The motor main circuit cable, encoder cable, and relay cable cannot be used for applications in which the cables are moved, twisted, or rotated to a small bending radius. The cable bending radius in the center of the cable must be a of 15 mm or larger. If the cables need to be bent, consult your Yaskawa representative.

• Coupling to the Machine

Observe the following precautions when coupling the servomotor with the drive axis of the machine.

- Align the shaft of the servomotor with the shaft of the equipment, and then couple the shafts.
- Make sure that the motor and the machine are accurately aligned.
- Failure to observe this caution may result in damage to the motor axis or deterioration of the standard life of the servomotor by an eccentric load. Keep the eccentric load as small as possible.

- A metal disk coupling designed for servomotors is recommended to maintain the response characteristics and durability of the servomotor.
- When attaching the coupling to the shaft of the servomotor, do not hammer the axis or near the encoder. Such shocks and vibrations may cause the encoder to malfunction.

Allowable Loads

Design the mechanical system so that, during operation, the thrust and radial loads applied to the servomotor shaft do not exceed the range shown in the table below.

Servomotor Model SJME-	Allowable Radial Load N	Allowable Thrust Load N Direction A or B	Distance from Flange mm	
01A	78	54	20	
02A	245	74	25	
04A	245	74	25	
08A	392	147	35	

• Mechanical Tolerance TIR (Total Indicator Reading)

The following diagram shows tolerances for the servomotor's output shaft and installation area.

SERVOPACK Installation

• Installation Conditions

Installation Site	Notes
Installation in a control panel	Design the control panel size, unit layout, and cooling method so the temperature around the SERVOPACK does not exceed 55°C. Note: The maximum ambient temperature for long-term reliability is 45°C.
Installation near a heating unit	Minimize the heat radiating from the heating unit as well as any temperature rise caused by natural convection so the temperature around the SERVOPACK does not exceed 55°C.
Installation near a source of vibration	Install a vibration isolator beneath the SERVOPACK to avoid subjecting it to vibration.
Installation at a site exposed to corrosive gas	Corrosive gas does not have an immediate effect on the SERVOPACK but will eventually cause the electronic components and contactor-related devices to malfunction. Take appropriate action to avoid corrosive gas.
Installation at a contaminated site	Take appropriate action to avoid any contaminants such as dust, iron particles, water drops, or oil mist. Contamination will cause the electronic components to malfunction.

Installation Method

- Install the SERVOPACK perpendicular to the wall. The SERVOPACK contains a built-in fan for cooling and must be mounted in the specified direction.
- Connect the mounting holes securely to the mounting surface with M4 screws (two mounting holes).

• Space between SERVOPACK Units

Be sure to keep a space between adjacent SERVOPACK units if they are mounted inside the control panel so that the units can be cooled.

Cables / Peripheral Devices

Servomotor Main-circuit Cables with Connectors at both Ends (for Relays)

■Specifications

Motor Type	Cable Model	Length (L)	Manufacturer	Contact		
No broko	JZSP-CHM000-05	5m	Fujix Co., Ltd			
NO Drake	JZSP-CHM000-10	10m		KUNSHAN FUJIX IMPORT		
With brakes	JZSP-CHM030-05	5m		AND EXPORT TARDE CO.,LTD		
	JZSP-CHM030-10	10m				

Note: Contact your Yaskawa representative for the servomotor main-circuit cables of 3m, 15m, and 20m.

Dimensions / Wiring Specifications ● JZSP-CHM000-□□(For motors without brakes)

SERVOPACK-end Connector

SERVOPACK-end Connector			S	Servom	otor-end (Connector
Pin No.	Signal	Wire Color		Pin No.	Signal	Wire Color
1	Phase U	Red		1	Phase U	Red
2	Phase V	White		2	Phase V	White
3	Phase W	Blue		3	Phase W	Blue
4	_	—		4	FG	Green/Yellow
				5	_	—
Crimped terminals	F G*	Green/Yellow		6	_	—

*: Connect the FG pin to the grounding terminal of the SERVOPACK.

JZSP-CHM030-□□(For motors with brakes)

Pin No.	Signal	Wire Color	Pin No.	Signal	Wire Co
1	Phase U	Red	1	Phase U	Red
2	Phase V	White	2	Phase V	White
3	Phase W	Blue	3	Phase W	Blue
4	_	—	4	FG	Green/Ye
			5	Brake	Black
Crimped terminals	F G*1	Green/Yellow	6	Brake	Black
Crimped terminals	Brake*2	Black			
Crimped terminals	Brako*2	Black			

*1: Connect the FG pin to the grounding terminal of the SERVOPACK.

*2: No polarity for connection to the brake.

Connectors for Servomotor Main-circuit Cables

■Specifications

Туре	Parts	Model	Manufacturer	Contact	
Crimp type	Receptacle	5557-06R-210		Shanghai	
	Terminal 5556T(chained) or		Molex Japan	Molex Interconnect(Shanghai)Co.,Ltd	
		5556TL(detached)	Co., Ltd.	Shenzhen	
	Crimping tool	57027-5000		Molex Hong Kong China Ltd., Shenzhen Office	

■Dimensions Units: mm

Connectors for Battery Case, Regenerative Unit, and Servomotor Main-circuit Cables

■Specifications

Туре	Pa	rts	Model	Manufacturer	Contact	
Spring	For battery case/ regenerative unit	CNA connector	04JFAT-SBXGF-N		Shanghai J.S.T.(SHANGHAI)	
type	For servomotor main-circuit cables	CNB connector	04JFAT-SAYGF-N	Co., Ltd.	CO LTD Shenzhen	
	Tool to remove wires		J-FAT-OT		J.S.T.(H.K) CO LTD	

Dimensions Units: mm Rever Supply/Regenerative Unit Conv

Power Supply/Regenerative Unit Connector 04JFAT-SBXGF-N

• Tool to Remove Wires

J-FAT-OT

• Servomotor Main Circuit Cable Connector 04JFAT-SAYGF-N

Encoder Cables with Connectors at both Ends (for Relay) Specifications

Model	Length (L)	Manufacturer	Contact			
JZSP-CHP800-05	5m	Sun-Wa Technos				
JZSP-CHP800-10	10m	Corporation	Shanghai Son-wa Technos Co.,ETD			

Note: Contact your Yaskawa representative for the encoder cables of 3m, 15m, and 20m.

■Dimensions

Shell kit : 36310-3200-008 Receptacle : 36210-0100FD

■Wiring Specifications

Pin No.	Signal	Wire Color		Pin No.	Signal	Wire Color
1	PG5V	Red		1	PG5V	Red
2	PG0V(GND)	Black		2	PG0V(GND)	Black
3	Phase A+	Blue		3	Phase A+	Blue
4	Phase A—	Blue/White		4	Phase A—	Blue/White
5	Phase B+	Yellow		5	Phase B+	Yellow
6	Phase B—	Yellow/White		6	Phase B—	Yellow/White
7	Phase /Z	Purple		7	Phase /Z	Purple
8	Phase U	Gray		8	Phase U	Gray
9	Phase V	Green		9	Phase V	Green
10	Phase W	Orange		10	Phase W	Orange
Shell	_	Shield wire		11	—	_
			Shield wire	12	FG	Shield

Connectors for Encoder Cables

■Specifications

• Motor End

Туре	Parts	Model	Manufacturer	Contact
	Receptacle	5557-12R-210		Shanghai
Crimp type	Terminal	5556T2(chained) or 5556T2L(detached)	Molex Japan Co., Ltd.	Molex Interconnect(Shanghai)Co.,Ltd. Shenzhen
	Crimping tool	57026-5000		Molex Hong Kong China Ltd., Shenzhen Office

• SERVOPACK End

Туре	Parts	Model	Manufacturer	Contact	
	Plug and cable cover set	54599-1005			
Crimp type	Plug housing	51209-1001		Shanghai Malay Interconnect(Shanghai)	
(gray)	Crimp terminal	59351-8087(chained) or 59351-8187(detached)	Molex Japan	Co.,Ltd.	
	Crimping tool	57401-5300	Co., Ltd.	Shenzhen Molex Hong Kong China Ltd.,	
Soldered type	Plug and cable cover set	54599-1005			
(gray)	Plug connector	ug connector 54593-1011		Shenzhen Ollice	
Soldered type	Shell kit	36310-3200-008	Sumitomo	SHANGHAI SUN-WA	
(black)	Receptacle	36210-0100FD	3M Ltd.	TECHNOS CO.,LTD	

■Dimensions Units: mm

Motor End

• SERVOPACK End

Cables for I/O Signals

■ Specifications

Cable Model	Length (L)	Manufacturer	Contact
JZSP-CHI003-01	1m		
JZSP-CHI003-02	2m	Sun-wa Technos	SHANGHAI SUN-WA TECHNOS CO.,LTD
JZSP-CHI003-03	3m	Corporation	

Dimensions Units: mm

Connector(14P) : 10114-6000EL Shell : 10314-52A0-008 (Sumitomo 3M Ltd.)

Cable (black) HP-SB/20276SR AWG#28×7P UL20276 VW-1

Wiring Specifications

Pin No Signal Code		Signal Namo	Signal Name Lead Marking Bin No S		Signal Signal Name		Lead	Mar	king		
FILLING.	Signal Code	Signal Name	Color	Dots	Dots Color		Code		Color	Dots	Color
1	CW, PULS	Reverse rotation pulse,	Orango		Black	8	CLR	Position error	Yellow		Red
2	/CW, /PULS	reference pulse	Orange		Red	9	/CLR	pulse clear	Dink	1	Black
3	CCW, SIGN	Forward rotation pulse,	Light gray		Black	10	PCO	Phase-C signal	FILK		Red
4	/CCW, /SIGN	reference signal	Light gray	1	Red	11	SG-PCO	Phase-C signal ground	Orongo		Black
5	+24VIN	External input power supply	W/hito		Black	12	ALM	Servo alarm	Orange	2	Red
6	/S-ON	Servo ON	vvinte		Red	13	/BK	Brake	Light grou		Black
7	SG-COM	Output signal ground	Yellow		Black	14	/COIN	Positioning completed	Light gray		Red
						Shell	-	FG	-		-

Connectors for I/O Signals

■ Specifications

Туре	Parts	Models	Manufacturer	Contact
Soldered	Shell kit	10314-52A0-008	Sumitomo	
type	Plug	10114-3000VE	3M Ltd.	SHANGHAI SUN-WA TECHNOS CO.,L

■Dimensions Units: mm

• Shell Kit

• Plug

Magnetic Contactor

■Specifications

Model	Specifications	Manufacturer	Contact	<u>a</u> aa
HI-11J	20A	Yaskawa Controls	YASKAWA ELECTRICH	
HI-15J	35A	Co., Ltd.	(SHANGHAI) CO.,LTD.	তিচিচি

■Dimensions Units: mm ● HI-11J

• HI-15J

External Fuse

■Specifications

• Fuse

Model	Rated Current	Rated Voltage	Fusing Time	Applicable SERVOPACKs	Manufacturer	Contact
0KLK015.T	15Arms	6001/	Within 2 s	SJDE-01 to 04	Littelfuse Inc	KUNSHAN FUJIX IMPORT
0KLK030.T	30Arms	0000	at 200%	SJDE-08	Littenuse inc.	AND EXPORT TARDE CO.,LTD.

• Fuse Block

Model	Туре	Manufacturer	Contact
L60030M2SQ	Screw terminal, 2 poles	Littelfuse Inc.	KUNSHAN FUJIX IMPORT
L60030M2C	Copper box lug, 2 poles		AND EXPORT TARDE CO.,LTD.

■Dimensions Units: mm

• Fuse

• Fuse Block

Noise Filter

■Specifications

Model	Specifications	Manufacturer	Contact
FN2070-6/07	Single-phase 250 VAC, 6A	Cabaffraar	
FN2070-10/07	Single-phase 250 VAC, 10A	Electronic	
FN2070-16/07	Single-phase 250 VAC, 16A	Liectionic	00.,210.

Dimensions Units: mm FN2070-6/07, FN2070-10/07

Contact terminal

Model	Α	В	С	D
FN2070-6/07	113.5±1	103±0.3	94±1	4.4±0.1
FN2070-10/07	156±1	143±0.3	130.5±1	5.3±0.1

• FN2070-16/07

Contact terminal

Regenerative Unit

■Specifications

Model	JUSP-RG08D	Manufacturer	Contact
Resistance	50Ω		
Allowable regenerative energy	12W		
Regenerative operating voltage	380 Vdc	Vaakowa Elastria	YASKAWA
Regenerative processing current	8 Adc	Corporation	(SHANGHAI) CO.,LTD.
Error detection	Disconnection of regenerative resistance, failure of regenerative transistor, or overvoltage		,
Alarm output	NC contact (Opens if a protective function is used.) Contact specifications: 250 VAC, 1.5A (inductive load)		

■Dimensions Units: mm

Surge Protector (For lightning surge protection)

■ Specifications

Model	Specifications	Manufacturer	Contact
R·C·M-601BQZ-4	Single-phase	Okaya Electric	OKAYA HONG KONG
	250 VAC	Industries Co., Ltd.	TRADING LIMITED

Dimensions Units: mm

AC Reactor

■Specifications

Model	Inductance (mH)	Rated Current (A)	Manufacturer	Contact	
X5052	45.0	1.0			É
X5053	20.0	2.0	Yaskawa Controls	YASKAWA ELECTRICH	
X5054	5.0	3.0	Co., Ltd.	(SHANGHAI) CO.,LTD.	
X5056	2.0	5.0			E.

■Dimensions Units: mm

Model	Dimensions mm							Approx. Mass		
wouer	Α	В	С	D	Ε	F	G	Н	I	kg
X5052	35	52	80	95	30	40	45	4	4.3	0.4
X5053	35	52	90	105	35	45	50	4	4.3	0.6
X5054	35	52	80	95	30	40	45	4	4.5	0.4
X5056	35	52	80	95	30	40	45	4	4.3	0.4

Replacement Cooling Fan

■Specifications

Model	Applicable SERVOPACKs	Manufacturer	Contact	
JZSP-CHF08-1	SJDE-01 to 04	Sun-Wa Technos	SHANGHAI SUN-WA	Í
JZSP-CHF08-2	SJDE-08	Corporation	TECHNOS CO.,LTD	

■External Views

• JZSP-CHF08-1

■Contact Information

Manufacture	Representative in China	Manufacture	Representative in China
Fujix Co., Ltd	Kunshan Fujix Import and Export Trade Co.,Ltd South to No,312 National Trunk HighWay HuaQiao,KunShan,JiangSu,China Phone: 0512-5769-6298 Fax : 0512-5469-6296		①Shanghai Okaya Hong Kong Trading Limited. Shanghai Representative Office Room 1225, Plaza Hanzhong, No.158 Hanzhong Road, Shanghai, China
Molex Japan Co., Ltd	 ①Shanghai Molex Interconnect (Shanghai) Co., Ltd. 889, Ying Lun Road, WaiGaoQiao Free Trade Zone, Pudong, Shanghai, 200131, China Phone: 021-5048-0889 Fax : 021-5048-0011 ②Shenzhen Molex Hong Kong China Ltd., Shenzhen Office Room 3608, PangLin Hotel, 2002, Jiablin Road, Shenzhen, China Phone: 0755-2518-5819 Fax : 0750-2518-5810 	Okaya Electric Industries Co., Ltd.	Phone: 021-6353-5978 Fax : 021-6353-5979 ②Shenzhen Okaya Hong Kong Trading Limited. Shenzhen Representative Office 20B1, Blook C, Electoronics Science & Technology Bldg., 2070 Shen Nan RD. Middle, Shenzhen, China Phone: 0755-8368-3486 Fax : 0755-8368-3488 ③Hong Kong Okaya Hong Kong Trading Limited. Flatc, 10/FL., VGA Building, 532-532A Castle Peak Road Kowloon, Hong Kong, China
JST. Mfg. Co., Ltd.	 ①Shanghai J.S.T.(SHANGHAI)CO.,LTD. 55 Fu Te South Road, Waigaoqiao Free Trade Zone, Pudong Shanghai, 200131 China. Phone : 021-5048-2225 Fax : 021-5064-4297 @Hong Kong J.S.T.(H.K.)CO.,LTD. UnitA,15/F.,China Dyeing Works Building, 382-392,Castle Peak Road, Tsuen Wan, N.T.,Hong Kong, China Phone : +852-2413-7979 Fax : +852-2411-1193 	Littelfuse Inc. Yaskawa Controls Co., Ltd.	Phone : +852-2744-0628 Fax : +852-2741-9801 Kunshan Fujix Import and Export Trade Co.,Ltd TRADE CO.,LTD. South to No,312 National Trunk HighWay HuaQiao,KunShan,JiangSu,China Phone : 0512-5769-6298 Fax : 0512-5469-6296 Yaskawa Electroc (Shanghai) Co.,Ltd. No.18 Xizang Zhong Rood, 1702 to 1707 Harbour Ring Plaza, Shanghai 200001, China
Sun-Wa Technos Corporation	Shanghai Sun-Wa Technos Co.,Ltd 8F-G Majesty Bldg.,138 Pudong Avenue, Shanghai, 200120 , China,	Electric Corporation	Phone: 021-5385-2200 Fax : 021-5385-3299
Sumitomo 3M Ltd.	Phone : 021-5882-3366 Fax : 021-5882-3377		
Schaffner Electronic	Schaffner EMC Ltd.Shanghai Blg 11,Lane 1365,East Kang Qiao Rd, Shanghai,China Phone : 021-6813-9855-2269 Fax : 021-6813-9811		

Selection of Servomotor Size

■AC Servomotor Selection Software: JunmaSize+

JunmaSize+ is software designed for the capacity selection of servomotors in the Junma series.

Features

- The latest product information.
- A wizard system with conversational mode to select optimal servomotors.
- References and reuses previously input and stored data.

Servomotor Selection Screen

■Formulas for Selecting Servomotor Capacity

			Linear Motion			
	Motions	Rotational Motion	Horizontal Axis	Vertical Axis		
Mechanical Configuration		<i>NR</i> <i>1/R</i> Servomotor	Servomotor $1/R$ Lead : PB	Servomotor Counterbalance 1/R Lead : PB		
		 N : Load axis speed (min⁻¹) V : Load speed (m/min) T : Effective load torque at motor shaft (N·m) μ : Friction coefficient 	<i>PB</i> : Ball screw lead (m) <i>M</i> : Mass of linear-motion unit (kg) <i>Mc</i> : Mass of counterbalance (kg)	 1/R :Gear ratio η :Combined efficiency T_M :Servomotor maximum torque (N·m) 		
Speed Diagram			Torque V_{P} T_{L} T_{S} T_{a} T_{a} T_{a} T_{b} T_{b} T_{c} $T_{$	on of vertical axis		
Travel [Distance (m)	$R = \frac{V\ell}{60} \cdot$	$\frac{t_a + 2t_c + t_d}{2} \qquad \left(\text{Where } t_a = t_d, \text{ R} = t_d \right)$	$=\frac{V_{e}}{60}(tm-ta)$		
Load ax (min ⁻¹)	kis speed	Ne	$N \ell = \frac{V \ell}{P_B}$	$N\ell = \frac{V\ell}{PB}$		
Motor S	Speed (min ⁻¹)		NM = N& · R			
Effective Motor S	e Load Torque at haft (N⋅m)	$T_L = \frac{T_\ell}{R \cdot \eta}$	$T_{L} = \frac{9.8 \times \mu \cdot M \cdot P_{B}}{2\pi \cdot R \cdot \eta}$	$T_{L} = \frac{9.8 \times (M - M_{C}) P_{B}}{2\pi \cdot R \cdot \eta}$		
Effective	e Load Inertia at	JL = JL1 + JL2 + JL3				
Motor Shaft (kg·m²)				JL1 JL2 JL2 JL1		
	Linear Motion	—	$J_{L1} = M \cdot \left(\frac{P_B}{2\pi R}\right)^2$	$J_{LI} = (M + M_C) \cdot \left(\frac{P_B}{2\pi R}\right)^2$		
	Rotational Motion	• Solid cylinder $\downarrow L (m) \rightarrow \downarrow$ $\downarrow f \rightarrow \downarrow$ Inertia for motor shaft> At gear input side $J_{L2} = J_K$ At gear output side $J_{L3} = \frac{J_K}{R^2}$	$J\kappa = \frac{1}{8} M\kappa \cdot D^2 \text{or}$ $M\kappa : \text{Mass (kg)}$ $\rho : \text{Density (kg/m)}$	$J\kappa = \frac{\pi}{32} \rho \cdot L \cdot D^4$ ³) $\begin{pmatrix} \text{Iron} & \rho = 7.87 \times 10^3 (\text{kg/m}^3) \\ \text{Aluminum} & \rho = 2.70 \times 10^3 (\text{kg/m}^3) \end{pmatrix}$		
Running	g Power (W)	$P_{0} = \frac{2\pi \cdot N_{M} \cdot T_{L}}{60}$				
Acceleration Power (W)		$P_a = \left(\frac{2\pi}{60} \cdot N_M\right)^2 \frac{J_L}{t_a}$				
Required Starting Torque (N·m)		$T_{P} = \frac{2\pi \cdot N_{M} \left(J_{M} + J_{L} \right)}{60 \times t_{a}} + T_{L}$				
Require (N∙m)	ed Braking Torque		$T_{S} = \frac{2\pi \cdot N_{M} (J_{M} + J_{L})}{60 \times t_{d}} - T_{L}$			
Effective	e Torque(N∙m)	$T_{ms} = \sqrt{\frac{T_P^2 \cdot t_a}{T_P}}$	$\frac{TL^2 \cdot t_c + TS^2 \cdot t_d}{t}$	$T_{rms} = \sqrt{\frac{T_P^2 \cdot t_a + T_L^2 (t_c + t_e) + T_S^2 \cdot t_d}{t}}$		
Min. Sta	arting Time (S)		$t_{am} = \frac{2\pi \cdot N_M (J_M + J_L)}{60 (T_M - T_L)}$			
Min. Braking Time (S)			$t_{dm} = \frac{2\pi \cdot N_M \left(J_M + J_L\right)}{60 \left(T_M + T_L\right)}$			

Mations		Linear Motion				
	wouldns	Rack & Pinion	Chain and Timing Belt			
Mechar	nical Configuration	^µ W Lp 1/R dp, Zp	^µ W Lp × dp, Zp			
		N_{ℓ} : Load axis speed (min-1) M : Mas V_{ℓ} : Load speed (m/min) $1/R$: Gea T_{ℓ} : Effective load torque at motor shaft (N·m) η : Com μ : Friction coefficient T_M : Server	s of linear-motion unit (kg) d_p : Pitch diameter (m)ir ratio Z_p : Number of gearibined efficiency L_p : Pitch (m)vomotor maximum torque (N·m) $P_B = Z_p \cdot L_p$ or $\pi \cdot d_p$			
Speed Diagram		Torque V_{ℓ} T_{L} T_{S} T_{S} T_{S} T_{S} T_{S} T_{S} T_{S} T_{C} $T_{$				
Travel I	Distance (m)	$R = \frac{V\ell}{60} \cdot \frac{ta + 2tc + td}{2} \qquad \left(N\right)$	Where $ta = td$, $R = \frac{Ve}{60}(tm - ta)$			
Load ax (min ⁻¹)	kis speed	Ne:	$=\frac{V\ell}{P_B}$			
Motor S	Speed (min ⁻¹)	NM=	Ne · R			
Effective Motor S	e Load Torque at haft (N·m)	$T_{L} = \frac{9.8 \times \mu \cdot M \cdot P_{B} + 2\pi \cdot T_{\ell}}{2\pi \cdot R \cdot \eta}$				
Effective	e Load Inertia at	JL = JL1 + JL2 + JL3				
		JL3 JL2	JL3 JL3 JL2 JL2			
	Linear Motion	JL1 = M •	$\left(\frac{P_B}{2\pi R}\right)^2$			
	Rotational Motion	• Solid cylinder $J_{K=1}$ $J_$	$\frac{1}{8} M_{\mathcal{K}} \cdot D^2 \text{or} J_{\mathcal{K}} = \frac{\pi}{32} \rho \cdot L \cdot D^4$ $\frac{M_{\mathcal{K}} \cdot \text{Mass (kg)}}{\rho : \text{Density (kg/m^3)}} \left(\begin{array}{c} \text{Iron} & \rho = 7.87 \times 10^3 (\text{kg/m^3}) \\ \text{Aluminum} & \rho = 2.70 \times 10^3 (\text{kg/m^3}) \end{array} \right)$			
Running Power (W)		$P_0 = \frac{2\pi \cdot N_M \cdot T_L}{60}$				
Acceleration Power (W)		$P_a = \left(\frac{2\pi}{60} \cdot N_M\right)^2 \frac{J_L}{t_a}$				
Required Starting Torque (N·m)		$T_{P} = \frac{2\pi \cdot N_{M} \left(J_{M} + J_{L} \right)}{60 \times t_{a}} + T_{L}$				
Required Braking Torque (N·m)		$T_{S} = \frac{2\pi \cdot N_{M} \left(J_{M} + J_{L} \right)}{60 \times t_{d}} - T_{L}$				
Effective	e Torque(N∙m)	$T_{rms} = \sqrt{\frac{T_P^2 \cdot t_a + 1}{T_P^2 \cdot t_a + 1}}$	$\frac{TL^2 \cdot t_c + Ts^2 \cdot t_d}{t}$			
Min. Sta	arting Time (S)	$t_{am} = \frac{2\pi \cdot N_{M}}{60(7)}$	$\frac{I(J_M + J_L)}{I_M - T_L}$			
Min. Br	aking Time (S)	$t_{dm} = \frac{2\pi \cdot N_M}{60(7)}$	$\frac{(J_M + J_L)}{T_M + T_L}$			

Servomotor Selection Example

Speed Diagram

Cycle time $t = \frac{60}{n} = \frac{60}{40} = 1.5$ (s)

Where acceleration time (t_a) = deceleration time (t_d) and setting time (tc) = 0.1 s when the filter setting of the FIL rotary switch is 0.

Acceleration time : $ta = td = tm - ts - \frac{60 \times l}{Vl} = 1.2 - 0.1 - \frac{60 \times 0.5}{30} = 0.1$ (s) Constant-speed time : $t_c = t_m - t_s - t_d = 1.2 - 0.1 - 0.1 - 0.1 = 0.9$ (s)

Speed

 $P_B = \pi d = \pi \times 0.064 = 0.201$

 $N\ell = \frac{V\ell}{P_B} = \frac{30}{0.201} = 149 \text{ (min}^{-1}\text{)}$ Load axis speed

Motor speed

 $N_M = N_\ell \cdot R = 149 \times 5 = 745 \text{ (min}^{-1}\text{)}$

Effective Torque at Motor Shaft

 $T_{L} = \frac{\mu \cdot 9.8 \cdot M \cdot P_{B} + 2\pi \cdot T_{\ell}}{2\pi R \cdot n} = \frac{0.2 \times 9.8 \times 4 \times 0.201 + 2\pi \times 0.05}{2\pi \times 5 \times 0.9} = 0.0669 \text{ (N·m)}$

Effective Load Moment of Inertia at Motor Shaft

 $J_L = J_{L1} + J_{L2} + J_{L3} = (1.639 + 0.687 + 0.362) \times 10^{-4} = 2.69 \times 10^{-4} (\text{kg} \cdot \text{m}^2)$

Linear motion

 $J_{L1} = M \left(\frac{P_B}{2\pi R} \right)^2 = 4 \times \left(\frac{0.201}{2\pi \times 5} \right)^2 = 1.639 \times 10^{-4} \text{ (kg·m}^2)$

Load-shaft motion: Pulley×2 + Gear B

$$J_{L2} = \frac{\Sigma J_i}{R^2} = \frac{1}{5^2} \times \frac{\pi}{32} \times (2690 \times 0.02 \times (0.064)^4 \times 2 + 7870 \times 0.02 \times (0.1)^4) = 0.687 \times 10^{-4} \, (\text{kg} \cdot \text{m}^2)$$

Motor-shaft motion: Gear A + Coupling

$$J_{L3} = \frac{\pi}{32} \times 7870 \times 0.02 \times (0.02)^4 + \frac{1}{8} \times 0.3 \times (0.03)^2 = 0.362 \times 10^{-4} \text{ (kg·m}^2)$$

Load Running Power

 $P_o = \frac{2\pi N_M \cdot T_L}{60} = \frac{2\pi \times 745 \times 0.0669}{60} = 5.2(W)$

Load Acceleration Power

 $P_a = \left(\frac{2\pi}{60} N_M\right)^2 \frac{J_L}{t_a} = \left(\frac{2\pi}{60} \times 745\right)^2 \times \frac{2.69 \times 10^{-4}}{0.1} = 16.4(W)$

Recommended Servomotor Selections

Conditions

- $\cdot T_L \leq$ Motor rated torque
 - $\cdot P_a + P_o = (1 \text{ to } 2) \times \text{Motor rated output}$
 - \cdot *N*_M \leq Motor rated speed or maximum speed
 - · $J_L \leq$ Allowable load inertia of SERVOPACK

From these conditions, the following selections are recommended :

- · Servomotor : SJME-02AMA4
- · SERVOPACK : SJDE-02APA

<Ratings>

 Rated output 	: 200(W)
Rated speed	: 3000(min ⁻¹)
Maximum speed	: 4500(min ⁻¹)
Rated torque	: 0.637(N∙m)
 Instantaneous peak torque 	: 1.91(N · m)
 Rotor moment of inertia 	: 0.417×10 ⁻⁴ (kg·m ²)
Allowable load inertia of SERVOPACK	: 3×10⁻⁴(kg⋅m²)

Servomotor Check

Required Starting Torque

$$T_{P} = \frac{2\pi N_{M} (J_{M} + J_{L})}{60 t_{a}} + T_{L} = \frac{2\pi \times 745 \times (0.417 + 2.69) \times 10^{-4}}{60 \times 0.1} + 0.0669 = 0.309 (\text{N} \cdot \text{m})$$

 $< 1.91(N \cdot m) =$ Instantaneous peak torque Therefore, the servomotor can be used.

Required Braking Torque

$$T_{S} = \frac{2\pi N_{M} (J_{M} + J_{L})}{60t_{a}} - T_{L} = \frac{2\pi \times 745 \times (0.417 + 2.69) \times 10^{-4}}{60 \times 0.1} - 0.0669 = 0.175 (\text{N} \cdot \text{m})$$

 $< 1.91(N \cdot m) =$ Instantaneous peak torque Therefore, the servomotor can be used.

Effective Torque

$$T_{rms} = \sqrt{\frac{T_{P}^2 \cdot t_a + T_{L}^2 \cdot t_c + T_{S}^2 \cdot t_d}{t}} = \sqrt{\frac{(0.297)^2 \times 0.1 + (0.0669)^2 \times 0.9 + (0.177)^2 \times 0.1}{1.5}}$$

= $0.1032(N \cdot m)$ < $0.637(N \cdot m)$ = Rated torque Therefore, the servomotor can be used.

Therefore the recommended selection of servomotors and SERVOPACKs has sufficient capacity and can be used.

Servomotor Selection Example

Mechanical Specifications

Load speed	: <i>V</i> _ℓ = 15m/min
Mass of linear motion unit	: <i>M</i> = 80kg
 Ball screw length 	: <i>LB</i> = 0.8m
Ball screw diameter	: <i>DB</i> = 0.016m
Ball screw lead	: <i>PB</i> = 0.005m
 Coupling mass 	: <i>Mc</i> = 0.3kg
Coupling outer diameter	$-D_{\rm C} = 0.03 {\rm m}$

5m/min	 Positioning frequency 	n = 40 times/min
Okg	 Traveling distance 	ℓ = 0.25m
8m	 Positioning interval 	<i>tm</i> = 1.2 S max.
016m	 Friction coefficient 	μ = 0.2
005m	 Combined efficiency 	$\eta = 0.9$

= 0.2 = 0.9

(90%)

Speed Diagram

 $t = \frac{60}{n} = \frac{60}{40} = 1.5$ (s) Cycle time

Where acceleration time (t_a) = deceleration time (t_d) and setting time (tc) = 0.1 s when the filter setting of the FIL rotary switch is 0.

Acceleration time : $t_a = t_d = t_m - t_s - \frac{60 \times \ell}{V\ell} = 1.2 - 0.1 - \frac{60 \times 0.5}{30} = 0.1$ (s) Constant-speed time : $t_c = t_m - t_s - t_d = 1.2 - 0.1 - 0.1 - 0.1 = 0.9$ (s)

Speed

- $N\ell = \frac{V\ell}{P_B} = \frac{15}{0.005} = 3000 \text{ (min}^{-1}\text{)}$ · Load axis speed
- Because of direct coupling, the gear ratio is 1/R = 1/1. Motor speed Then, $N_M = N_\ell \cdot R = 3000 \times 1 = 3000 \text{ (min}^{-1})$

Effective Torque at Motor Shaft

 $T_L = \frac{\mu \cdot 9.8 \cdot M \cdot P_B}{2\pi R \cdot \eta} = \frac{0.2 \times 9.8 \times 80 \times 0.005}{2\pi \times 1 \times 0.9} = 0.139 \text{ (N·m)}$

Effective Load Moment of Inertia at Motor Shaft

 $J_L = J_{L1} + J_B + J_C = 1.25 \times 10^{-4} (\text{kg} \cdot \text{m}^2)$

Linear motion	$J_{L1} = M \left(\frac{P_B}{2\pi R}\right)^2 = 80 \times \left(\frac{0.005}{2\pi \times 1}\right)^2 = 0.507 \times 10^{-4} \text{ (kg·m}^2\text{)}$
Ball screw	$J_B = \frac{\pi}{32} \rho \cdot L_B \cdot D_B^4 = \frac{\pi}{32} \times 7.87 \times 10^3 \times 0.8 \times (0.016)^4 = 0.405 \times 10^{-4} \text{ (kg·m}^2)$
Coupling	$Jc = \frac{1}{8}Mc \cdot Dc^{2} = \frac{1}{8} \times 0.3 \times (0.03)^{2} = 0.338 \times 10^{-4} \text{ (kg·m^{2})}$

Load Running Power

$$P_o = \frac{2\pi N_M \cdot T_L}{60} = \frac{2\pi \times 3000 \times 0.139}{60} = 43.7 (W)$$

Load Acceleration Power

 $P_a = \left(\frac{2\pi}{60} N_M\right)^2 \frac{J_L}{t_a} = \left(\frac{2\pi}{60} \times 3000\right)^2 \times \frac{1.25 \times 10^{-4}}{0.1} = 123.4(W)$

Recommended Servomotor Selections

Conditions

- $\cdot T_L \leq$ Motor rated torque
- $\cdot P_a + P_o = (1 \text{ to } 2) \times \text{Motor rated output}$
- · $N_M \leq$ Motor rated speed or maximum speed
- · $J_{L} \leq$ Allowable load inertia of SERVOPACK

From these conditions, the following selections are recommended :

- · Servomotor : SJME-02AMA4
- · SERVOPACK : SJDE-02APA

<Ratings>

- Rated output : 200(W)
- Rated speed : 3000(min⁻¹)
- Maximum speed : 4500(min⁻¹)
- Rated torque : 0.637(N⋅m)
- Instantaneous peak torque : 1.91(N⋅m)
- Rotor moment of inertia : 0.417×10⁻⁴(kg·m²)
- Allowable load inertia of SERVOPACK: 3×10⁻⁴(kg·m²)

Servomotor Check

Required Starting Torque

 $T_{P} = \frac{2\pi N_{M} (J_{M} + J_{L})}{60 t_{a}} + T_{L} = \frac{2\pi \times 3000 \times (0.417 + 1.25) \times 10^{-4}}{60 \times 0.1} + 0.139 \approx 0.662 (\text{N} \cdot \text{m})$ < 1.91(N·m)=Instantaneous peak torque

Therefore, the servomotor can be used.

Required Braking Torque

$$T_{S} = \frac{2\pi N_{M} (J_{M} + J_{L})}{60 t_{a}} - T_{L} = \frac{2\pi \times 3000 \times (0.417 + 1.25) \times 10^{-4}}{60 \times 0.1} - 0.139 \approx 0.384 (\text{N} \cdot \text{m})$$

< 1.91(N·m)= Instantaneous peak torque Therefore, the servomotor can be used.

Effective Torque

$$T_{rms} = \sqrt{\frac{T_{P}^{2} \cdot t_{a} + T_{L}^{2} \cdot t_{c} + T_{S}^{2} \cdot t_{d}}{t}} = \sqrt{\frac{(0.662)^{2} \times 0.1 + (0.139)^{2} \times 0.9 + (0.384)^{2} \times 0.1}{1.5}}$$

≒0.225(N•m)

< 0.637(N·m)= Rated torque

Therefore, the servomotor can be used.

Therefore the recommended selection of servomotors and SERVOPACKs has sufficient capacity and can be used.

Wiring to Mitsubishi's QD75D Positioning Unit

• Wiring to Omron's CS1W-NC133/233/433 Positioning Unit

Product Standard Life

Servodrive parts are subject to deterioration caused by mechanical friction and aging.

• The following standard service life is for reference only. The service life varies with environmental conditions and application methods. Refer to the standard life provided in the table and contact your Yaskawa representative to determine whether part replacement is required. If a problem occurs, inspection is necessary regardless of the length of the service life.

SERVOPACKs

Part	Standard Life	Remarks
Cooling fan	30,000 hours	The service life varies with the operating conditions. Check for abnormal sounds or vibration during inspection.

Note: The following cooling fans are available for replacement (manufactured by Sun-Wa Technos Corporation). • SJDE-01 to 04 : JZSP-CHF08-1 • SJDE-08 : JZSP-CHF08-2

Servomotors

Part	Standard Life	Remarks
Bearings	20,000 hours	The service life varies with the operating conditions. Check for abnormal sounds or vibration during inspection.

Terminology

■SERVOPACKs

Servo OFF

The state in which the motor is free and not controlled and power is not supplied to the motor.

Servo ON

The state in which the motor is controlled and power is supplied to the motor.

•H level

When the digital signal is at high level (5 V for TTL levels).

L level

When the digital signal is at low level (0 V for TTL levels).

•Rising edge

Where an electric signal shifts from low level to high level.

Position settling time

The SERVOPACK drives the motor with a pulse train input for position reference. The position settling time is the time from when the pulse train input is completed until the positioning error is within the acceptable range.

Overload

The state in which the torque integrated over a certain period exceeds a preset allowable value.

Momentary power interruption

The state where the supply of voltage to the SERVOPACK turns OFF momentarily.

Open collector

An IC with an output collector that is open or a circuit using such an IC.

•Line driver

An IC with a relatively long-distance signal transmission method, or the circuit using such an IC.

Momentary power hold time

The maximum time that the voltage of the main circuit can be maintained without generating an alarm during a momentary interruption of power.

Noise countermeasures

A method to prevent or suppress noise that may disturb the signal lines resulting in malfunctions. Countermeasures should be taken so that noise is not radiated from the SERVOPACK and so that the SERVOPACK is not adversely influenced by external noise.

•D-grade grounding

A grounding method with a grounding resistance of 100 Ω or less.

Frame ground

Frame ground (FG). Connected to the shield wire of the cable.

Signal ground

The signal ground (SG) is a signal level of 0 V.

Servomotors

•Forward rotation and reverse rotation

With Yaskawa's AC servomotors, forward rotation is the CCW direction and reverse rotation is the CW direction as seen from the load side of the motor.

Motor with brake

The brake is used while the motor is not rotating. Do not use the brake to stop the motor during operation. The servo must remain off while the brake is functioning.

•Centering precision

The mechanical precision between the two shafts of the rotating machines coupled together. Centering precision usually refers to the difference in position between the axes of the motor shaft and the load shaft.

Allowable thrust load

The maximum allowable load applied parallel to the axis of the motor shaft.

Allowable radial load

The maximum allowable load applied vertically to the axis of the motor shaft.

Peripheral Devices

Short circuit breaker

A device that automatically shuts off the circuit when the low-voltage line has a ground fault.

Magnetic contactor

A magnetic switch that turns power ON and OFF.

•Surge protector

A device that absorbs external voltages, such as lightning surges, to prevent the malfunctioning and destruction of peripheral electronic circuits.

Noise filter

A device installed to prevent external noise from power lines.

•Servomotor size selection software

Software used to select servomotors and SERVOPACKs.

Product name: JunmaSize+

Coupling

A joint that connects the motor shaft and load shaft. The coupling can absorb differences between the position of the motor shaft and the load shaft to a certain extent. Couplings are available in metal disk types, Oldham types, and bellows types. Metal disk couplings are recommended for the optimum performance of the servomotor and have good durability.

Q. What are the features of a servomotor?

A. Compared with a stepping motor, a servomotor can output constant torque in low- to high-speed ranges. Unlike a stepping motor, which causes problems with vibration, noise, and heat generation, a servomotor ensures smooth rotation without loss of control.

Q. What features does the JUNMA servodrive have compared with other servodrives?

A. Conventional servodrives require settings for a variety of functions, including servo gain settings. The JUNMA servodrive works with minimal adjustments of two rotary switches instead of parameters. Therefore, high-performance control is ensured with the same ease as a stepping motor.

Q. What machines can the JUNMA be used for?

A. The JUNMA can be used for almost all machines, including timing belts and ball screws. The JUNMA cannot be used if the installation precision exceeds the recommended precision specified in Coupling to the Machine (page 22).

Q. What is "Servo ON"?

A. It refers to the application of power to the servomotor by turning ON the /S-ON I/O signal. When power is applied to the motor, the position of the motor shaft will be locked unless a reference is input. In the servo ON state, the servomotor is in a servo-locked state and will not move even if external force is applied.

Q. The red indicator on the front panel of the SERVOPACK is lit and the servomotor stopped operating. What should be done?

A. The alarm has been turned on. The meaning of alarms and corrections vary with the display on the indicator and the number of indicators that light. For details, refer to Alarm (page 13).

Q. Why does the REF (green indicator) blink while the motor is in operation?

A. The REF blinks to indicate that a reference pulse is being input (i.e., the motor is rotating).Do not touch the machine or motor shaft while the REF is blinking, no matter how slowly the motor is turning. For details, refer to Part Names and Functions (page 12).

Q. When is the FIL rotary switch for the reference filter setting used?

- A. The FIL switch is used to smooth the reference input to the SERVOPACK. The initial value (0) may be used in most cases. If the machine vibrates, increase the value. The higher the value is, the smoother the motion becomes but the longer the position settling time will be. Settings up to 7 are available.
- Q. The servomotor generates noise after the servomotor is turned on or after the value of the FIL rotary switch for reference filter setting is changed. What should be done?
- A. The JUNMA starts vibration detection when the servo is turned on, and makes automatic adjustments if needed. While making these adjustments, some noise may be generated. Once the adjustments are made, the adjusted value will be used until the setting of the FIL rotary switch for reference filter is changed. Therefore, no further noise will be generated.

Q. The machine vibrates. What should be done?

A. The JUNMA detects machine vibration and makes automatic adjustments. Any unusual noise while the machine is running may be caused by errors in the automatic adjustments. Increase the Reference Filter Setting (FIL) by one, and then return to the previous setting. JUNMA will now be able to make the correct automatic adjustments.

Revision History

The revision dates and numbers of the revised catalogs are given on the bottom of the back cover.

LITERATURE NO. KAEP S800000 23B © Printed in Japan July 2005 04-7 Revision number Data of pote of option of an intervision

-Date of	□Date of original	
printing	publication	

Date of Printing	Rev. No.	Section	Revised Content
July 2004	_	_	First edition: Based on the Japanese version of the JUNMA Series catalog printed in July 2004. (Catalog No.: KAJP S800000 23A)
July 2005	♦	_	Second edition: Based on the Japanese version of the JUNMA Series catalog printed in February 2005. (Catalog No.: KAJP S800000 23B)
		All chapters	Revision: Exterior of SERVOPACK and servomotor.
		All chapters	Addition: Contact information in China. (Cables and peripheral devices)
		P4: Connection to Peripheral Devices	Addition: Cautions and Warnings. Revision: Drawings in the system configuration.
		P4: SERVOPACKs and Applicable Servomotors	Revised.
		P5: Cable and Connectors	Revised.
		P8: Speed/Torque Characteristics	Revision: Repetitive operating range.
		P10: Ratings and Specifications	Revision: Power loss at rated output.
		P12: Reference Filter Setting (FIL)	Revision: Acceleration/Deceleration Time for Step Reference.
		P14: Connection Diagram	Revised.
		P17: Wiring Precautions	Revised.
		P18: Explanation of I/O Signals	Addition: Notes on the lag time for the alarm signal and the phase-C output signal.
		P19: Connection Example of Input Signal	Revision: Connection diagrams.
		P19: Connection Example of Output Signal	Added.
		P30: External Fuse	Added.
		P34: Contact Information	Added.

JUNMA SERIES

IRUMA BUSINESS CENTER (SOLUTION CENTER) 480, Kamifujisawa, Iruma, Saitama 358-8555, Japan Phone 81-4-2962-5696 Fax 81-4-2962-6138

YASKAWA ELECTRIC AMERICA, INC.

2121 Norman Drive South, Waukegan, IL 60085, U.S.A. Phone 1-847-887-7000 Fax 1-847-887-7370

YASKAWA ELÉTRICO DO BRASIL COMÉRCIO LTD.A. Avenida Fagundes Filho, 620 Bairro Saude-Sao Pãulo-SP, Brazil CEP: 04304-000 Phone 55-11-5071-2552 Fax 55-11-5581-8795

YASKAWA ELECTRIC EUROPE GmbH Am Kronberger Hang 2, 65824 Schwalbach, Germany Phone 49-6196-569-300 Fax 49-6196-569-312

YASKAWA ELECTRIC UK LTD. 1 Hunt Hill Orchardton Woods Cumbernauld, G68 9LF, United Kingdom Phone 44-1236-735000 Fax 44-1236-458182

YASKAWA ELECTRIC KOREA CORPORATION

7F, Doore Bldg. 24, Yeoido-dong, Youngdungpo-Ku, Seoul 150-877, Korea Phone 82-2-784-7844 Fax 82-2-784-8495

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD. 151 Lorong Chuan, #04-01, New Tech Park 556741, Singapore Phone 65-6282-3003 Fax 65-6289-3003

YASKAWA ELECTRIC (SHANGHAI) CO., LTD. No.18 Xizang Zhong Road. Room 1702-1707, Harbour Ring Plaza Shanghai 200001, China Phone 86-21-5385-2200 Fax 86-21-5385-3299

YASKAWA ELECTRIC (SHANGHAI) CO., LTD. BEIJING OFFICE Room 1011A, Tower W3 Oriental Plaza, No.1 East Chang An Ave., Dong Cheng District, Beijing 100738, China Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

9F, 16, Nanking E. Rd., Sec. 3, Taipei, Taiwan Phone 886-2-2502-5003 Fax 886-2-2505-1280

YASKAWA ELECTRIC CORPORATION

YASKAWA

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements.

 $\ensuremath{\textcircled{\sc 0}}$ 2004-2005 YASKAWA ELECTRIC CORPORATION. All rights reserved.

LITERATURE NO. KAEP S800000 23B Printed in Japan July 2005 04-7 ()-0 05-7(®)

