
Cat. No. W217-E1-2

C200H

SYSMAC

Programmable Controllers

(CPU21-E/23-E/31-E)

C200H Programmable Controllers
Operation Manual

(For CPU21-E/23-E/31-E)

Revised March 2000

iv

!

!

!

v

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OM RON ProductReferences
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

VisualAids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

/ OMRON, 1992
Allrightsreserved.Nopartofthispublicationm aybereproduced,storedinaretrievalsystem ,ortransm itted,inany
form ,orbyanym eans,m echanical,electronic,photocopying,recording,orotherwise,withoutthepriorwrittenperm is-
sionofOM RON.

Nopatentliabilityisassum edwithrespecttotheuseoftheinform ationcontainedherein.M oreover,becauseOM RON is
constantlystrivingtoim proveitshigh-qualityproducts,theinform ationcontainedinthism anualissubjecttochange
withoutnotice.Everyprecautionhasbeentakeninthepreparationofthism anual.Nevertheless,OM RON assum esno
responsibilityforerrorsorom issions.Neitherisanyliabilityassum edfordam agesresultingfrom theuseoftheinform a-
tioncontainedinthispublication.

vi

TABLE OF CONTENTS

vii

PRECAUTIONS xi. .
1IntendedAudience xii...
2GeneralPrecautions xii..
3SafetyPrecautions xii...
4OperatingEnvironm entPrecautions xii...
5ApplicationPrecautions xiii..

SECTION 1
Introduction 1. .
1-1 Overview 2..
1-2 TheOriginsofPC Logic 2..
1-3 PC Term inology 3...
1-4 OM RON ProductTerm inology 3...
1-5 Overview ofPC Operation 4...
1-6 PeripheralDevices 5...
1-7 AvailableM anuals 7...
1-8 LSS Capabilities 8...

SECTION 2
Hardware Considerations 11. .
2-1 Indicators 12..
2-2 PC Configuration 12..
2-3 CPU Capabilities 13..

SECTION 3
Memory Areas 15. .
3-1 Introduction 16..
3-2 DataAreaStructure 16..
3-3 IR (InternalRelay)Area 18..
3-4 SR (SpecialRelay)Area 21..
3-5 AR (AuxiliaryRelay)Area 30..
3-6 DM (DataM em ory)Area 36..
3-7 HR (HoldingRelay)Area 39...
3-8 TC (Tim er/Counter)Area 39...
3-9 LR (LinkRelay)Area 40..
3-10 Program M em ory 40..
3-11 TR (Tem poraryRelay)Area 40...

SECTION 4
Writing and Inputting the Program 41.
4-1 BasicProcedure 42...
4-2 InstructionTerm inology 42...
4-3 Program Capacity 43..
4-4 BasicLadderDiagram s 43...
4-5 TheProgram m ingConsole 56..
4-6 PreparationforOperation 60..
4-7 Inputting,M odifying,andCheckingtheProgram 71...............................
4-8 ControllingBitStatus 87...
4-9 W orkBits(InternalRelays) 88..
4-10 Program m ingPrecautions 91...
4-11 Program Execution 92...

TABLE OF CONTENTS

viii

SECTION 5
Instruction Set 93. .
5-1 Notation 95...
5-2 InstructionForm at 95...
5-3 DataAreas,DefinerValues,andFlags 95.......................................
5-4 DifferentiatedInstructions 96...
5-5 CodingRight-handInstructions 97...
5-6 InstructionSetLists 100..
5-7 LadderDiagram Instructions 102...
5-8 BitControlInstructions 103...
5-9 INTERLOCK andINTERLOCK CLEAR -IL(02)andILC(03) 108...................
5-10 JUM P andJUM P END -JM P(04)andJM E(05) 110................................
5-11 END -END(01) 111..
5-12 NO OPERATION -NOP(00) 111...
5-13 Tim erandCounterInstructions 111...
5-14 DataShifting 121...
5-15 DataM ovem ent 129...
5-16 DataCom parison 138..
5-17 DataConversion 146...
5-18 BCD Calculations 158..
5-19 BinaryCalculations 174..
5-20 LogicInstructions 179..
5-21 SubroutinesandInterruptControl 182...
5-22 StepInstructions 188...
5-23 SpecialInstructions 197..
5-24 NetworkInstructions 207...

SECTION 6
Program Execution Timing 215. .
6-1 CycleTim e 216...
6-2 CalculatingCycleTim e 220...
6-3 InstructionExecutionTim es 222...
6-4 I/O ResponseTim e 227...

SECTION 7
Program Monitoring and Execution 229.
7-1 M onitoringOperationandM odifyingData 230....................................
7-2 Program BackupandRestoreOperations 246.....................................

SECTION 8
Troubleshooting 255. .
8-1 Alarm Indicators 256...
8-2 Program m edAlarm sandErrorM essages 256.....................................
8-3 ReadingandClearingErrorsandM essages 256...................................
8-4 ErrorM essages 256..
8-5 ErrorFlags 260...

Appendices
A StandardM odels 263...
B Program m ingInstructions 271...
C Program m ingConsoleOperations 303...
D ErrorandArithm eticFlagOperation 313...
E DataAreas 317...
F W ordAssignm entRecordingSheets 321...
G Program CodingSheet 327..
H DataConversionTable 329..
I ExtendedASCII 331...

ix

Aboutthis M anual:

This manual describes the operation of the C200H C-series Programmable Controllers using the C200H-
CPU21-E, C200H-CPU23-E, or C200H-CPU31-E CPUs, and it includes the sections described below.
Installation information is provided in the C200H (CPU21-E/23-E/31-E) Programmable Control Installa-
tion Guide. A table of other manuals that can be used in conjunction with this manual is providedat theend
of Section 1 Introduction. Provided at the end of Section 2 Hardware Considerations is a description of the
differences between the older CPUs and the newer CPUs described in this manual.

Please read this manual completely and be sure you understand the information provide before attempt-
ing to operation the C200H.

Section 1 Introduction explains the background and some of the basic terms used in ladder-diagram
programming. It also provides an overview of the process of programming and operating a PC and ex-
plains basic terminology used with OMRON PCs. Descriptions of Peripheral Devices used with the
C200H PCs and a table of other manuals available to use with this manual for special PC applications are
also provided.

Section 2 Hardw are Considerations explains basic aspects of the overall PC configuration and de-
scribes the indicators that are referred to in other sections of this manual.

Section 3M em oryAreas takes a look at the way memory is divided and allocated and explains the infor-
mation provided there to aid in programming. It explains how I/O is managed in memory and how bits in
memory correspond to specific I/O points. It also provides information on System DM, a special area in
C200H PCs that provides the user with flexible control of PC operating parameters.

Section 4W riting and Entering Program sexplains the basics of ladder-diagram programming, looking
at the elements that make up the parts of a ladder-diagram program and explaining how execution of this
program is controlled. It also explains how to convert ladder diagrams into mnemonic code so that the
programs can be entered using a Programming Console.

Section 5 Instruction Setdescribes all of the instructions used in programming.

Section 6 Program Execution Tim ing explains the cycling process used to execute the program and
tells how to coordinate inputs and outputs so that they occur at the proper times.

Section 7Program Debugging and Execution explains the Programming Console procedures used to
input and debug the program and to monitor and control operation.

Section 8 Troubleshooting provides information on error indications and other means of reducing
down-time. Information in this section is also useful when debugging programs.

The Appendices provide tables of standard OMRON products available for the C200H PCs, reference
tables of instructions and Programming Console operations, coding sheet to help in programming and
parameter input, and other information helpful in PC operation.

WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

!

xi

PRECAUTIONS

ThissectionprovidesgeneralprecautionsforusingtheC200H Tem peratureSensorUnitandrelateddevices.

The informationcontained in this section is important for the safeandreliableapplicationof the C200HTemperature
SensorUnit.Youmustreadthissectionandunderstandthe informationcontainedbefore attemptingto setuporoper-
ate the C200H Temperature Sensor Unit.

1IntendedAudience xii...
2GeneralPrecautions xii..
3SafetyPrecautions xii...
4OperatingEnvironm entPrecautions xii...
5ApplicationPrecautions xiii..

!

!

!

!

!

4OperatingEnvironmentPrecautions

xii

1 Intended Audience
This manual is intended for the following personnel, who must also have knowl-
edge of electrical systems (an electrical engineer or the equivalent).
! Personnel in charge of installing FA systems.
! Personnel in charge of designing FA systems.
! Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifications
described in the relevant manuals.
Before using the product under conditions which are not described in themanual
or applying the product to nuclear control systems, railroad systems, aviation
systems, vehicles, combustion systems, medical equipment, amusement ma-
chines, safety equipment, and other systems, machines, and equipment that
may have a serious influence on lives and property if used improperly, consult
your OMRON representative.
Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide the
systems, machines, and equipment with double safety mechanisms.
This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this manual
close at hand for reference during operation.

WARNING It is extremely important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC system to the above-mentioned
applications.

3 Safety Precautions

WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing so
may result in electric shock.

WARNING Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so
may result in malfunction, fire, or electric shock.

4 Operating Environment Precautions

Caution Do not operate the control system in the following locations:

! Locations subject to direct sunlight.
! Locations subject to temperatures or humidity outside the range specified in

the specifications.
! Locations subject to condensation as the result of severe changes in tempera-

ture.

!

!

!

!

5Application Precautions

xiii

! Locations subject to corrosive or flammable gases.
! Locations subject to dust (especially iron dust) or salts.
! Locations subject to exposure to water, oil, or chemicals.
! Locations subject to shock or vibration.

Caution Take appropriate and sufficient countermeasures when installing systems in the
following locations:

! Locations subject to static electricity or other forms of noise.
! Locations subject to strong electromagnetic fields.
! Locations subject to possible exposure to radioactivity.
! Locations close to power supplies.

Caution The operating environment of the PC system can have a large effect on the lon-
gevity and reliability of the system. Improper operating environments can lead to
malfunction, failure, and other unforeseeable problems with the PC system. Be
sure that the operating environment is within the specified conditions at installa-
tion and remains within the specified conditions during the life of the system.

5 Application Precautions
Observe the following precautions when using the PC system.

WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

! Always ground the system to 100" or less when installing the Units. Not con-
necting to a ground of 100 " or less may result in electric shock.

! Always turn OFF the power supply to the PC before attempting any of the fol-
lowing. Not turning OFF the power supply may result in malfunction or electric
shock.
! Mounting or dismounting I/O Units, CPU Units, Memory Units, or any other

Units.
! Assembling the Units.
! Setting DIP switches or rotary switches.
! Connecting cables or wiring the system.
! Connecting or disconnecting the connectors.

Caution Failure to abide by the following precautions could lead to faulty operation of the
PC or the system, or could damage the PC or PC Units. Always heed these pre-
cautions.

! Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes.

! Always use the power supply voltages specified in this manual. An incorrect
voltage may result in malfunction or burning.

! Take appropriate measures to ensure that the specified power with the rated
voltage and frequency is supplied. Be particularly careful in places where the
power supply is unstable. An incorrect power supply may result in malfunction.

! Install external breakers and take other safety measures against short-circuit-
ing in external wiring. Insufficient safety measures against short-circuitingmay
result in burning.

5Application Precautions

xiv

! Do not apply voltages to the Input Units in excess of the rated input voltage.
Excess voltages may result in burning.

! Do not apply voltages or connect loads to the Output Units in excess of the
maximum switching capacity. Excess voltage or loads may result in burning.

! Disconnect the functional ground terminal when performing withstand voltage
tests. Not disconnecting the functional ground terminal may result in burning.

! Be sure that all the mounting screws, terminal screws, and cable connector
screws are tightened to the torque specified in this manual. Incorrect tighten-
ing torque may result in malfunction.

! Leave the label attached to the Unit when wiring. Removing the label may re-
sult in malfunction if foreign matter enters the Unit.

! Remove the label after the completion of wiring to ensure proper heat dissipa-
tion. Leaving the label attached may result in malfunction.

! Double-check all wiring and switch settings before turning ON the power sup-
ply. Incorrect wiring may result in burning.

! Wire correctly. Incorrect wiring may result in burning.
! Mount Units only after checking terminal blocks and connectors completely.
! Be sure that the terminal blocks, Memory Units, expansion cables, and other

items with locking devices are properly locked into place. Improper locking
may result in malfunction.

! Check the user program for proper execution before actually running it on the
Unit. Not checking the program may result in an unexpected operation.

! Confirm that no adverse effect will occur in thesystem beforeattempting any of
the following. Not doing so may result in an unexpected operation.
! Changing the operating mode of the PC.
! Force-setting/force-resetting any bit in memory.
! Changing the present value of any word or any set value in memory.

! Resume operation only after transferring to the new CPU Unit the contents of
the DM Area, HR Area, and other data required for resuming operation. Not
doing so may result in an unexpected operation.

! Do not pull on the cables or bend the cables beyond their natural limit. Doing
either of these may break the cables.

! Do not place objects on top of the cables or other wiring lines. Doing so may
break the cables.

! Use crimp terminals for wiring. Do not connect bare stranded wires directly to
terminals. Connection of bare stranded wires may result in burning.

! When replacing parts, be sure to confirm that the rating of a new part is correct.
Not doing so may result in malfunction or burning.

! Before touching a Unit, be sure to first touch agrounded metallic object inorder
to discharge any static built-up. Not doing so may result in malfunction or dam-
age.

1

SECTION 1
Introduction

Thissectiongivesabriefoverview ofthehistoryofProgram m ableControllersandexplainsterm scom m onlyusedinladder-
diagram program m ing.Italsoprovidesanoverview oftheprocessofprogram m ingandoperatingaPC andexplainsbasic
term inologyusedwithOM RON PCs.DescriptionsofperipheraldevicesusedwiththeC200H,andatableofotherm anuals
availabletousewiththism anualforspecialPC applications,arealsoprovided.

1-1 Overview 2..
1-2 TheOriginsofPC Logic 2..
1-3 PC Term inology 3...
1-4 OM RON ProductTerm inology 3...
1-5 Overview ofPC Operation 4...
1-6 PeripheralDevices 5...
1-7 AvailableM anuals 7...
1-8 LSS Capabilities 8...

1-8-1 OfflineOperations 8..
1-8-2 OnlineOperations 9..
1-8-3 OfflineandOnlineOperations 9.......................................

2

1-1 Overview
A PC (Programmable Controller) is basically a CPU (Central Processing Unit)
containing a program and connected to input and output (I/O) devices. The pro-
gram controls the PC so that when an input signal from an input device turns ON,
the appropriate response is made. The response normally involves turning ON
an output signal to some sort of output device. The input devices could be photo-
electric sensors, pushbuttons on control panels, limit switches, or any other de-
vice that can produce a signal that can be input into the PC. The output devices
could be solenoids, switches activating indicator lamps, relays turning on mo-
tors, or any other devices that can be activated by signals output from the PC.
For example, a sensor detecting a passing product turns ON an input to the PC.
The PC responds by turning ON an output that activates a pusher that pushes
the product onto another conveyor for further processing. Another sensor, posi-
tioned higher than the first, turns ON a different input to indicate that the product
is too tall. The PC responds by turning on another pusher positioned before the
pusher mentioned above to push the too-tall product into a rejection box.
Although this example involves only two inputs and two outputs, it is typical of the
type of control operation that PCs can achieve. Actually even this example is
much more complex than it may at first appear because of the timing that would
be required, i.e., “How does the PC know when to activate each pusher?” Much
more complicated operations, however, are also possible. The problem is how
to get the desired control signals from available inputs at appropriate times.
To achieve proper control, the C200H uses a form of PC logic called ladder-dia-
gram programming. This manual is written to explain ladder-diagram program-
ming and to prepare the reader to program and operate the C200H.

1-2 The Origins of PC Logic
PCs historically originate in relay-based control systems. And although the inte-
grated circuits and internal logic of the PC have taken the place of the discrete
relays, timers, counters, and other such devices, actual PC operation proceeds
as if those discrete devices were still in place. PC control, however, also pro-
vides computer capabilities and accuracy to achieve a great deal more flexibility
and reliability than is possible with relays.
The symbols and other control concepts used to describe PC operation also
come from relay-based control and form the basis of the ladder-diagram pro-
gramming method. Most of the terms used to describe these symbols and con-
cepts, however, have come in from computer terminology.

The terminology used throughout this manual is somewhat different from relay
terminology, but the concepts are the same.
The following table shows the relationship between relay terms and the PC
terms used for OMRON PCs.

Relay term PC equivalent

contact input or condition

coil output or work bit

NO relay normally open condition

NC relay normally closed condition

Actually there is not a total equivalence between these terms. The term condi-
tion is only used to describe ladder diagram programs in general and is specifi-
cally equivalent to one of certain set of basic instructions. The terms input and
output are not used in programming per se, except in reference to I/O bits that
are assigned to input and output signals coming into and leaving the PC. Nor-
mally open conditions and normally closed conditions are explained in 4-4 Basic
Ladder Diagrams.

Relay vs. PC Terminology

TheOriginsofPC Logic Section 1-2

3

1-3 PC Terminology
Although also provided in the Glossary at the back of this manual, the following
terms are crucial to understanding PC operation and are thus explained here.

Because the C200H is a Rack PC, there is no one product that is a C200H PC.
That is why we talk about the configuration of the PC, because a PC is a configu-
ration of smaller Units.
To have a functional PC, you would need to have a CPU Rack with at least one
Unit mounted to it that provides I/O points. Whenwe refer to thePC, however, we
are generally talking about the CPU and all of the Units directly controlled by it
through the program. This does not include the I/O devices connected to PC in-
puts and outputs.
If you are not familiar with the terms used above to describe a PC, refer to Sec-
tion 2 Hardware Considerations for explanations.

A device connected to the PC that sends a signal to the PC is called an input
device; the signal it sends is called an input signal. A signal enters the PC
through terminals or through pins on a connector on a Unit. The place where a
signal enters the PC is called an input point. This input point is allocated a loca-
tion in memory that reflects its status, i.e., either ON or OFF. This memory loca-
tion is called an input bit. The CPU, in its normal processing cycle, monitors the
status of all input points and turns ON or OFF corresponding input bits accord-
ingly.
There are also output bits in memory that are allocated to output points on
Units through which output signals are sent to output devices, i.e., an output
bit is turned ON to send a signal to an output device through an output point. The
CPU periodically turns output points ON or OFF according to the status of the
output bits.
These terms are used when describing different aspects of PC operation. When
programming, one is concerned with what information is held in memory, and so
I/O bits are referred to. When talking about the Units that connect the PC to the
controlled system and the places on these Units where signals enter and leave
the PC, I/O points are referred to. When wiring these I/O points, the physical
counterparts of the I/O points, either terminals or connector pins, are referred to.
When talking about the signals that enter or leave the PC, one refers to input
signals and output signals, or sometimes just inputs and outputs. It all depends
on what aspect of PC operation is being talked about.

The Control System includes the PC and all I/O devices it uses to control an ex-
ternal system. A sensor that provides information to achieve control is an input
device that is clearly part of the Control System. The controlled system is the
external system that is being controlled by the PC program through these I/O
devices. I/O devices can sometimes be considered part of the controlled sys-
tem, e.g., a motor used to drive a conveyor belt.

1-4 OMRON Product Terminology
OMRON products are divided into several functional groups that have generic
names. Appendix A Standard Models list products according to these groups.
The term Unit is used to refer to all of the OMRON PC products. Although a Unit
is any one of the building blocks that goes together to form a C200H PC, its
meaning is generally, but not always, limited in context to refer to the Units that
are mounted to a Rack. Most, but not all, of these products have names that end
with the word Unit.
The largest group of OMRON products is the I/O Units. These include all of the
Rack-mounting Units that provide non-dedicated input or output points for gen-
eral use. I/O Units come with a variety of point connections and specifications.

PC

Inputs and Outputs

Controlled System and
Control System

OM RON ProductTerminology Section 1-4

4

High-density I/O Units are designed to provide high-density I/O capability and
include Group 2 High-density I/O Units and Special I/O High-density I/O Units.
Special I/O Units are dedicated Units that are designed to meet specific needs.
These include some of the High-density I/O Units, Position Control Units, High-
speed Counter Units, and Analog I/O Units.
Link Units are used to create Link Systems that link more than one PC or link a
single PC to remote I/O points. Link Units include Remote I/O Units, PC Link
Units, Host Link Units, SYSMAC NET Link Units, and SYSMAC LINK Units.
SYSMAC NET Link and SYSMAC LINK Units can be used with the CPU11 only.
Other product groups include Programming Devices, Peripheral Devices,
and DIN Rail Products.

1-5 Overview of PC Operation
The following are the basic steps involved in programming and operating a
C200H. Assuming you have already purchased one or more of these PCs, you
must have a reasonable idea of the required information for steps one and two,
which are discussed briefly below. This manual is written to explain steps three
through six, eight, and nine. The relevant sections of this manual that provide
more information are listed with each of these steps.

1,2,3... 1. Determine what the controlled system must do, in what order, and at what
times.

2. Determine what Racks and what Units will be required. Refer to the C200H
Installation Guide. If a Link System is required, refer to the appropriate Sys-
tem Manual.

3. On paper, assign all input and output devices to I/O points on Units and de-
termine which I/O bits will beallocated toeach. If the PC includes Special I/O
Units or Link Systems, refer to the individual Operation Manuals or System
Manuals for details on I/O bit allocation. (Section 3 Memory Areas)

4. Using relay ladder symbols, write a program that represents the sequence
of required operations and their inter-relationships. Be sure to also program
appropriate responses for all possible emergency situations. (Section 4
Writing ana Inputting the Program, Section 5 Instruction Set, Section 6 Pro-
gram Execution Timing)

5. Input the program and all required operating parameters into the PC. (Sec-
tion 4-7 Inputting, Modifying, and Checking the Program.)

6. Debug the program, first to eliminate any syntax errors, and then to find ex-
ecution errors. (Section 4-7 Inputting, Modifying, and Checking the Pro-
gram, Section 7 Program Monitoring and Execution, and Section 8
Troubleshooting)

7. Wire the PC to the controlled system. This step can actually be started as
soon as step 3 has been completed. Refer to the C200H Installation Guide
and to Operation Manuals and System Manuals for details on individual
Units.

8. Test the program in an actual control situation and carry out fine tuning as
required. (Section 7 Program Monitoring and Execution and Section 8
Troubleshooting)

9. Record two copies of the finished program onmasters andstore them safely
in different locations. (Section 4-7 Inputting, Modifying, and Checking the
Program)

Designing the Control System is the first step in automating any process. A PC
can be programmed and operated only after the overall Control System is fully
understood. Designing the Control System requires, first of all, a thorough un-
derstanding of the system that is to be controlled. The first step in designing a
Control System is thus determining the requirements of the controlled system.

Control System Design

Overview ofPC Operation Section 1-5

5

The first thing that must be assessed is the number of input and output points
that the controlled system will require. This is done by identifying each device
that is to send an input signal to the PC or which is to receive an output signal
from the PC. Keep in mind that the number of I/O points available depends on
the configuration of the PC. Refer to 3-3 IR Area for details on I/O capacity and
the allocation of I/O bits to I/O points.

Next, determine the sequence in which control operations are to occur and the
relative timing of the operations. Identify the physical relationships between the
I/O devices as well as the kinds of responses that should occur between them.
For instance, a photoelectric switch might be functionally tied to a motor by way
of a counter within the PC. When the PC receives an input from a start switch, it
could start the motor. The PC could then stop the motor when the counter has
received a specified number of input signals from the photoelectric switch.
Each of the related tasks must be similarly determined, from the beginning of the
control operation to the end.

The actual Units that will be mounted or connected to PC Racks must be deter-
mined according to the requirements of the I/O devices. Actual hardwarespecifi-
cations, such as voltage and current levels, as well as functional considerations,
such as those that require Special I/O Units or Link Systems will need to be con-
sidered. In many cases, Special I/O Units, Intelligent I/O Units, or Link Systems
can greatly reduce the programming burden. Details on these Units and Link
Systems are available in appropriate Operation Manuals and System Manuals.
Once the entire Control System has been designed, the task of programming,
debugging, and operation as described in the remaining sections of this manual
can begin.

1-6 Peripheral Devices
The following peripheral devices can be used in programming, either to input/
debug/monitor the PC program or to interface the PC to external devices to out-
put the program or memory area data. Model numbers for all devices listed be-
low are provided in Appendix A Standard Models. OMRON product names have
been placed in bold when introduced in the following descriptions.

A Programming Console is the simplest form of programming device for OM-
RON PCs. All Programming Consoles are connected directly to the CPUwithout
requiring a separate interface. The Programming Console also functions as an
interface to transfer programs to a standard cassette tape recorder.
Various types of Programming Console are available, including both
CPU-mounting and Hand-held models. Programming Console operations are
described later in this manual.

The GPC allows you to perform all the operations of the Programming Console
as well as many additional ones. PC programs can be written on-screen in lad-
der-diagram form as well as in mnemonic form. As the program is written, it is
displayed on a liquid crystal display, making confirmation and modification quick
and easy. Syntax checks may also be performed on the programs before they
are downloaded to the PC. Many other functions are available, depending on the
Memory Pack used with the GPC.
A Peripheral Interface Unit is required to interface the GPC to the PC.
The GPC also functions as an interface to copy programs directly to a standard
cassette tape recorder. A PROM Writer, FloppyDisk InterfaceUnit, or Printer
InterfaceUnit canbe directly mounted to the GPCto output programs directly to
an EPROM chip, floppy disk drive, or printing device, respectively.

LSS is designed to run on IBM AT/XT compatibles to enable all of the operations
available on the GPC.

Input/Output Requirements

Sequence, Timing, and
Relationships

Unit Requirements

Programming Console

Graphic Programming
Console: GPC

Ladder Support Software:
LSS

PeripheralDevices Section 1-6

6

A Peripheral Interface Unit or Host LinkUnit is required to interface acomput-
er running LSS to the PC. Using an Optical Host Link Unit also enables the useof
optical fiber cable to connect the FIT to the PC. Wired Host Link Units are avail-
able when desired. (Although FIT does not have optical connectors, conversion
to optical fiber cable is possible by using converting Link Adapters.)

The FIT is an OMRON computer with specially designed software that allows
you to perform all of the operations that are available with the GPC or LSS. Pro-
grams can also be output directly to an EPROM chip, floppy disk drive, or print-
ing device without any additional interface. The FIT has an EPROM writer and
two 3.5” floppy disk drives built in.
A Peripheral Interface Unit or Host Link Unit is required to interface the FIT to
the PC. Usingan OpticalHost Link Unit alsoenables theuse of optical fiber cable
to connect the FIT to the PC. Wired Host Link Units are available when desired.
(Although FIT does not haveoptical connectors, conversion tooptical fiber cable
is possible by using converting Link Adapters.)

Other than its applications described above, the PROM Writer can be mounted
to the PC’s CPU to write programs to EPROM chips.

Other than its applications described above, the Floppy Disk Interface Unit can
be mounted to the PC’s CPU to interface a floppy disk drive and write programs
onto floppy disks.

Other than its applications described above, the Printer Interface Unit can be
mounted to the PC’s CPU to interface a printer or X-Y plotter to print out pro-
grams in either mnemonic or ladder-diagram form.

Factory Intelligent Terminal:
FIT

PROM Writer

Floppy Disk Interface Unit

Printer Interface Unit

PeripheralDevices Section 1-6

7

1-7 Available Manuals

The following table lists other manuals that may be required to program and/or
operate the C200H. Operation Manuals and/or Operation Guides are also pro-
vided with individual Units and are required for wiring and other specifications.

Name Cat. No. Contents

GPC Operation Manual W84 Programming procedures for the GPC
(Graphics Programming Console)

FIT Operation Manual W150 Programming procedures for using the FIT
(Factory Intelligent Terminal

LSS Operation Manual W237 Programming procedures for using LSS
(Ladder Support Software)

SSS Operation Manual: Basic
SSS Operation Manual: C series PCs

W247
W248

Programming procedures for using SSS
(SYSMAC Support Software)

Data Access Console Operation Guide W173 Data area monitoring and data modification
procedures for the Data Access Console

Printer Interface Unit Operation Guide W107 Procedures for interfacing a PC to a printer

PROM Writer Operation Guide W155 Procedures for writing programs to EPROM
chips

Floppy Disk Interface Unit Operation Guide W119 Procedures for interfacing a PC to a floppy
disk drive

Wired Remote I/O System Manual
(SYSMAC BUS)

W120 Information on building a Wired Remote I/O
System to enable remote I/O capability

Optical Remote I/O System Manual
(SYSMAC BUS)

W136 Information on building an Optical Remote I/O
System to enable remote I/O capability

PC Link System Manual W135 Information on building a PC Link System to
automatically transfer data between PCs

Host Link System Manual
(SYSMAC WAY)

W143 Information on building a Host Link System to
manage PCs from a ‘host’ computer

SYSMAC NET Link Unit Operation Manual W114 Information on building a SYSMAC NET Link
System and thus create an optical LAN
integrating PCs with computers and other
peripheral devices

SYSMAC LINK System Manual W174 Information on building a SYSMAC LINK
System to enable automatic data transfer,
programming, and programmed data transfer
between the PCs in the System

High-speed Counter Unit Operation Manual CT001V1/CT002: W141
CT021: W311

Information on High-speed Counter Unit

Position Control Unit Operation Manuals NC111: W137
NC112: W128
NC211: W166

Information on Position Control Unit

Analog I/O Units Operation Guide W127 Information on the C200H-AD001,
C200H-DA001 Analog I/O Units

Analog Input Unit Operation Manual W229 Information on the C200H-AD002 Analog
Input Unit

Temperature Sensor Unit Operation Guide W124 Information on Temperature Sensor Unit

ASCII Unit Operation Manual W165 Information on ASCII Unit

ID Sensor Unit Operation Guide W153 Information on ID Sensor Unit

Voice Unit Operation Manual W172 Information on Voice Unit

Fuzzy Logic Unit Operation Manual W208 Information on Fuzzy Logic Unit

Fuzzy Support Software Operation Manual W210 Information on the Fuzzy Support Software
which supports the Fuzzy Logic Units

Temperature Control Unit Operation Manual W225 Information on Temperature Control Unit

Heat/Cool Temperature Control Unit
Operation Manual

W240 Information on Heating and Cooling
Temperature Control Unit

AvailableM anuals Section 1-7

8

Name ContentsCat. No.

PID Control Unit Operation Manual W241 Information on PID Control Unit

Cam Positioner Unit Operation Manual W224 Information on Cam Positioner Unit

1-8 LSS Capabilities
The LSS is a complete programming and control package designed for C-series
PCs. It provides not only programming capabilities, but also advanced debug-
ging, monitoring, and program/data management. The following tables provide
only a brief introduction to the capabilities of the LSS. For further informationand
actual operating procedures, please refer to the Ladder Support Software Op-
eration Manual.

1-8-1 Offline Operations
Group Description

General
Programming

General programming operations feature function keys to easily read, write, and store programs.

PROGRAMMING SAVE PROGRAM Writes all or part of the user program to a data disk.

RETRIEVE PROGRAM Retrieves all or part of the user program from on a data disk.

CHANGE DISPLAY Switches the display between four display modes: Ladder, Ladder
with Comments, Mnemonic 1 (function key and numeric key input
mode) and Mnemonic 2 (alphanumeric key input mode).

SEARCH INSTRUCTION Searches for instructions including specified operands.

I/O COMMENT Creates, reads, modifies, and searches for I/O comments.

BLOCK COMMENT Creates, edits, and searches for block comments for output instruc-
tions.

LINE COMMENT Creates, searches for, and edits line comments.

CUT AND PASTE Edits programs by copying, moving, or deleting instruction blocks.

EDIT I/O COMMENT Displays 32 I/O comments at once to write, edit, and search.

RETRIEVE COMMENTS Retrieves comments from programs stored on a data disk.

MEMORY USAGE Displays the used capacity of user program memory, comments,
and internal memory.

CLEAR MEMORY Clears the user program memory.

CHECK PROGRAM Checks whether the user program contains syntax errors. The check
can be performed in three levels.

DM (data memory) DM operations are used to edit DM data in hexadecimal or ASCII form. There are also features
for copying, filling and printing DM data, as well as data disk save and retrieve operations.

I/O TABLE I/O TABLE is used to edit, check, and print I/O tables. It also provides data disk save and re-
trieve operations.

UTILITY DATA AREA LISTS Displays lists of such items as used areas and cross-references
(i.e., instructions that use specified operands).

CHANGE ADDRESSES Globally changes bit and word addresses in the user program.

PRINT LISTS Prints lists, ladder diagrams, and mnemonics.

EPROM FUNCTIONS Writes, reads, and compares the user program between the PROM
Writer and system work disk.

C500 # C2000H Converts the program format from C500 to C2000H

NETWORK DATA LINKS Creates a data link table.

CREATE LIBRARY FILE Formats a floppy disk or hard disk for use with the LSS.

TIME CHART MONITOR Accesses the time chart monitor displays produced online.

SET INSTRUCTIONS Used to assign instructions to function codes in instructions tables
and to save/retrieve instructions tables to/from data disk files.

RETRIEVE/SAVE INSTR Used to save and retrieve expansion instruction sets to and from
data disk files.

PC SETUP Used to set the PC operating parameters in the PC Setup and to
save and retrieve PC Setups to and from data disk files.

LSS Capabilities Section 1-8

9

1-8-2 Online Operations
Group Function name Description

ON-LINE MONITOR DATA Used to monitor up to 20 bits/words during program execution. The status
of bits and contents of words being monitored can also be controlled.

TRANSFER PROGRAM Transfers and compares the user program between the LSS and PC.

ON-LINE EDIT Edits the PC program during MONITOR mode execution.

READ CYCLE TIME Reads and displays the cycle time of the PC.

CLEAR DATA AREAS Clears the PC data areas such as HR, CNT, AR, and DM (to zero).

MEMORY USAGE Displays the used capacity of program memory area, comments, and in-
ternal memory.

Operations are also available to change display modes and search for instructions and comments.

DM DM area operations are available to transfer and compare DM data between the PC, LSS, and data
disks, and to monitor DM contents in the PC.

I/O TABLE I/O TABLE operations are used to write, transfer, and compare I/O tables between the PC and LSS.

UTILITY FILE MEMORY Displays file memory lists; transfers file memory contents between PC
and LSS; clears file memory; transfers file memory contents between PC
and File Memory Unit; saves or retrieves file memory contents to or from
floppy disk; and edits file memory data.

XFER DATA LINK TBL Transfers and compares data link tables between the PC and computer.

CLOCK Used to read and set the internal clock in the PC.

TRANSFER INSTR Used to transfer the expansion instruction set from the PC to the LSS.

TRANSFER PC SETUP Used to transfer the PC Setup between the PC and the LSS

1-8-3 Offline and Online Operations
Group Description

SYSTEM SETUP The SYSTEM SETUP provides settings for the operating environment of the LSS, including the
PC that’s being communicated with (including network and interface settings) and disk drive,
comment, printer, PROM Writer, and monitor settings. It also provides settings for transfer of
I/O table and data link tables to UM.

FILE MANAGEMENT FILE MANAGEMENT operations include basic file management features so that files can be
manipulated directly from the LSS. It also provides a feature for merging program files.

LSS Capabilities Section 1-8

11

SECTION 2
Hardware Considerations

Thissectionprovidesinform ationonhardwareaspectsoftheC200H thatarerelevanttoprogram m ingandsoftwareopera-
tion.TheseincludeindicatorsontheCPU Unit,basicPC configuration,andCPU capabilities.Thisinform ationiscoveredin
detailintheC200H Programmable Controllers (CPU21-E/23-E/31-E) Installation Guide.

2-1 Indicators 12..
2-2 PC Configuration 12..
2-3 CPU Capabilities 13..

12

2-1 Indicators
CPU indicators provide visual information on the general operation of the PC.
Although not substitutes for proper error programming using the flags and other
error indicators provided in the data areas of memory, these indicators provide
ready confirmation of proper operation.

CPU indicators are shown below and are described in the following table.

Indicator Function

POWER Lights when power is supplied to the CPU.

RUN Lights when the CPU is operating normally.

ALARM/ERROR ALARM: Flashes when a non-fatal error is discovered in error
diagnosis operations. PC operation will continue.
ERROR:Lights when a fatal error is discovered in error diagnosis
operations. When this indicator lights, the RUN indicator will go
off, CPU operation will be stopped, and all outputs from the PC
will be turned OFF.

OUT INHIBIT Lights when the Output OFF Bit, SR 25215, is turned ON. All
outputs from the PC will be turned OFF.

RUN POWER

ALARM/ERROR

OUT INHIBIT

2-2 PC Configuration
The basic PC configuration consists of two types of Rack: a CPU Rack and Ex-
pansion I/O Racks. The Expansion I/O Racks are not a required part of the basic
system. They are used to increase the number of I/O points. An illustration of
these Racks is provided in 3-3 IR Area. A third type of Rack, called a Slave Rack,
can be used when the PC is provided with a Remote I/O System.

A C200H CPU Rack consists of four components: (1) The CPU Backplane, to
which the CPU and other Units are mounted. (2) The CPU, which executes the
program and controls the PC. (3) Other Units, such as I/O Units, Special I/O
Units, and Link Units, which provide the physical I/O terminals corresponding to
I/O points.
A C200H CPU Rack can be used alone or it can be connected to other Racks to
provide additional I/O points. The CPU Rack provides three, five, or eight slots to
which these other Units can be mounted depending on the backplane used.

An Expansion I/O Rack can be thought of as an extension of the PC because it
provides additional slots to which other Units can be mounted. It is built onto an
Expansion I/O Backplane to which a Power Supply and up to eight other Units
are mounted.
An Expansion I/O Rack is always connected to the CPU via the connectors on
the Backplanes, allowing communication between the two Racks. Up to two Ex-
pansion I/O Racks can be connected in series to the CPU Rack.

CPU Indicators

CPU Racks

Expansion I/O Racks

PC Configuration Section 2-2

13

Only I/O Units and Special I/O Units can be mounted to Slave Racks. All I/O
Units, Special I/O Units, Group-2 High-density I/O Units, Remote I/O Master
Units, PC and Host Link Units, can be mounted to any slot on all other Racks,
although mounting to the two rightmost slots on theCPU Rack may interferewith
the mounting of peripheral devices. With the CPU31-E CPU Unit, SYSMAC
LINK and SYSMAC NET Link Units can bemounted to the two rightmost slots on
the CPU Rack.

Refer to the C200H Installation Guide for details about which slots can be used
for which Units and other details about PC configuration. The way in which I/O
points on Units are allocated in memory is described in 3-3 IR Area.

2-3 CPU Capabilities

The C200H-CPU21-E/CPU23-E/CPU31-E CPUs are based on the C200H-
CPU11-E CPU, except only the CPU31-E supports Network Instructions. All of
the CPUs covered in this manual also support a group of High-density I/O Units
called Group-2 High-density I/O Units. Group-2 High-density I/O Units are clas-
sified by themselves and are not classified as Special I/O Units.

The following table lists the capabilities of the various C200H CPUs.

Function CPU01-E CPU03-E CPU11-E CPU21-E CPU23-E CPU31-E

Compatible with Group-2 High-density I/O Units
(C200H-ID216/ID217/OD218/OD219)

No No No Yes Yes Yes

Can process GROUP-2 HIGH-DENSITY I/O
REFRESH -- MPRF(61)

No No No Yes Yes Yes

Compatible with C200H-MR433/MR833/ME432
Memory Units

Yes1 Yes1 Yes1 Yes Yes Yes1

Compatible with C200H-ME832 Memory Unit No No No Yes Yes Yes1

Error history No No Yes Yes Yes Yes

Clock/calendar No No Yes Yes2 Yes2 Yes

Forced Status Hold Bit (SR 25211) No No Yes Yes Yes Yes

Can set TERMINAL mode for Programming
Console

No No Yes Yes Yes Yes

Additional instructions:
REVERSIBLE WORD SHIFT -- RWS(17)
CYCLE TIME -- SCAN(18)
MULTI-WORD COMPARE -- MCMP(19)
LONG MESSAGE -- LMSG(47)
TERMINAL MODE -- TERM(48)
SET SYSTEM -- SET(49)
DOUBLE COMPARE -- CMPL(60)
COLUMN-TO-WORD -- CTW(63)
WORD-TO-COLUMN -- WTC(64)
HOURS-TO-SECONDS -- HTS(65)
SECONDS-TO-HOURS -- STH(66)
VALUE CALCULATE -- VCAL(69)

No No Yes Yes Yes Yes

Network Instructions:
NETWORK SEND -- SEND(90)
NETWORK RECEIVE -- RECV(98)

No No Yes No No Yes

Power Supply AC DC AC AC DC AC

Note 1. The C200H-CPU01-E/CPU03-E cannot use the Memory Units’ clock, and
the C200H-CPU11-E/CPU31-E CPUs have a built-in clock.

2. The C200H-CPU21-E/CPU23-E can use the C200H-MR433/MR833/
ME432/ME832 Memory Units’ clock.

Unit Mounting Position

CPU Capabilities Section 2-3

15

SECTION 3
Memory Areas

Varioustypesofdataarerequiredtoachieveeffectiveandcorrectcontrol.Tofacilitatem anagingthisdata,thePC isprovided
withvariousmemory areasfordata,eachofwhichperform sadifferentfunction.Theareasgenerallyaccessiblebytheuser
foruseinprogram m ingareclassifiedasdata areas.Theotherm em oryareaistheProgram M em ory,wheretheuser’spro-
gram isactuallystored.Thissectiondescribestheseareasindividuallyandprovidesinform ationthatwillbenecessarytouse
them .Asam atterofconvention,theTR areaisdescribedinthissection,eventhoughitisnotstrictlyam em oryarea.

3-1 Introduction 16..
3-2 DataAreaStructure 16..
3-3 IR (InternalRelay)Area 18..
3-4 SR (SpecialRelay)Area 21..

3-4-1 Rem oteI/O System s 22..
3-4-2 LinkSystem FlagsandControlBits 23..................................
3-4-3 ForcedStatusHoldBit 27...
3-4-4 I/O StatusHoldBit 27..
3-4-5 OutputOFF Bit 28..
3-4-6 FAL (FailureAlarm)Area 28..
3-4-7 Low BatteryFlag 28...
3-4-8 CycleTim eErrorFlag 28...
3-4-9 I/O VerificationErrorFlag 28..
3-4-10 FirstCycleFlag 29..
3-4-11 ClockPulseBits 29..
3-4-12 StepFlag 29...
3-4-13 Group-2High-densityI/O UnitErrorFlag 29.............................
3-4-14 InstructionExecutionErrorFlag,ER 30.................................
3-4-15 Arithm eticFlags 30..

3-5 AR (AuxiliaryRelay)Area 30..
3-5-1 SlaveRackErrorFlags 32..
3-5-2 Group-2High-densityI/O UnitErrorFlags 32............................
3-5-3 OpticalI/O UnitErrorFlags 32..
3-5-4 SYSM AC LINK System DataLinkSettings 32............................
3-5-5 ErrorHistoryBits 33...
3-5-6 ActiveNodeFlags 33..
3-5-7 SYSM AC LINK/SYSM AC NET LinkSystem ServiceTim e(CPU31-E Only) 34
3-5-8 Calendar/ClockAreaandBits 34.......................................
3-5-9 TERM INAL M odeKeyBits 35..
3-5-10 Power-OFF Counter 35...
3-5-11 CPU Low BatteryFlag 35...
3-5-12 SCAN(18)CycleTim eFlag 35..
3-5-13 NetworkParam eterFlags 36...
3-5-14 LinkUnitM ountedFlags 36...
3-5-15 CPU-m ountingDeviceFlag 36...
3-5-16 FALS-generatingAddress 36..
3-5-17 CycleTim eIndicators 36...

3-6 DM (DataM em ory)Area 36..
3-7 HR (HoldingRelay)Area 39...
3-8 TC (Tim er/Counter)Area 39...
3-9 LR (LinkRelay)Area 40..
3-10 Program M em ory 40..
3-11 TR (Tem poraryRelay)Area 40...

16

3-1 Introduction
Details, including the name, acronym, range, and function of each area aresum-
marized in the following table. All but the last three of these areas are dataareas.
Data and memory areas are normally referred to by their acronyms.

Area Acronym Range Function

Internal Relay IR Words: 000 to 235
Bits: 0000 to 23515

Used to control I/O points, other bits, timers,
and counters, and to temporarily store data.

Special Relay SR Words: 236 to 255
Bits: 23600 to 25507

Contains system clocks, flags, control bits, and
status information.

Auxiliary Relay AR Words: AR 00 to AR 27
Bits: AR 00 to AR 2715

Contains flags and bits for special functions.
Retains status during power failure.

Data Memory DM Read/write: DM 0000 to DM 0999
Read only: DM 1000 to DM 1999

Used for internal data storage and manipula-
tion.

Holding Relay HR Words: HR 00 to HR 99
Bits: HR 0000 to HR 9915

Used to store data and to retain the data values
when the power to the PC is turned off.

Timer/Counter TC TC 000 to TC 511 (TC numbers used
to access other information)

Used to define timers and counters, and to ac-
cess completion flags, PV, and SV. In general,
when used as a bit operand, a TC number ac-
cesses the completion flag for the timer or
counter defined using the TC number. When
used as a word operand, the TC number ac-
cesses the present value of the timer or count-
er.

Link Relay LR Words: LR 00 to LR 63
Bits: LR 0000 to 6315

Available for use as work bits.

Temporary Relay TR TR 00 to TR 07 (bits only) Used to temporarily store and retrieve execu-
tion conditions. These bits can only be used in
the Load and Output instructions. Storing and
retrieving execution conditions is necessary
when programming certain types of branching
ladder diagrams.

Program Memory UM UM: Depends on Memory Unit used. Contains the program executed by the CPU.

When some bits and words in certain data areas are not being used for their in-
tended purpose, they can be used in programming as required to control other
bits. Words and bits available for use in this fashion are called work words and
work bits. Most, but not all, unused bits can be used as work bits. Those that can
be used are described area-by-area in the remainder of this section. Actual ap-
plication of work bits and work words is described in Section 4 Writing and Input-
ting the Program.

Some data areas contain flags and/or control bits. Flags are bits that are auto-
matically turned ON and OFF to indicate particular operation status. Although
some flags can be turned ONand OFF by theuser, most flags are read only; they
cannot be controlled directly.
Control bits are bits turned ON and OFF by the user to control specific aspects of
operation. Any bit given a name using the word bit rather than the word flag is a
control bit, e.g., Restart bits are control bits.

3-2 Data Area Structure
When designating a data area, the acronym for the area is always required for
any but the IR and SR areas. Although the acronyms for the IR and SR areas are
often given for clarity in text explanations, they are not required, and not entered,
when programming. Any data area designation without an acronym is assumed
to be in either the IR or SR area. Because IR and SR addresses run consecu-
tively, the word or bit addresses are sufficient to differentiate these two areas.
An actual data location within any data area but the TC area is designated by its
address. The address designates the bit or word within the area where the de-

Work Bits and Words

Flags and Control Bits

DataAreaStructure Section 3-2

17

sired data is located. The TC areaconsists of TC numbers, each of which is used
for a specific timer or counter defined in the program. Refer to 3-8 TC Area for
more details on TC numbers and to 5-13 Timer and Counter Instructions for in-
formation on their application.
The rest of the data areas (i.e., the IR, SR, HR, DM, AR, and LRareas) consist of
words, each of which consists of 16 bits numbered 00 through 15 from right to
left. IR words 000 and 001 are shown below with bit numbers. Here, the content
of each word is shown as all zeros. Bit 00 is called the rightmost bit; bit 15, the
leftmost bit.
The term least significant bit is often used for rightmost bit; the term most signifi-
cant bit, for leftmost bit. These terms are not used in this manual because a
single data word is often split into two or more parts, with each part used for dif-
ferent parameters or operands. When this is done, the rightmost bits of a word
may actually become the most significant bits, i.e., the leftmost bits in another
word,when combined with other bits to form a new word.

Bit number

IR word 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IR word 001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

The DM area is accessible by word only; you cannot designate an individual bit
within a DM word. Data in the IR, SR, HR, AR, and LR areas is accessible either
by word or by bit, depending on the instruction in which the data is being used.
To designate one of these areas by word, all that is necessary is the acronym (if
required) and the two-, three-, or four-digit word address. To designate an area
by bit, the word address is combined with the bit number as a single four- or five-
digit address. The following table show examples of this. The two rightmost dig-
its of a bit designation must indicate a bit between 00 and 15, i.e., the rightmost
digit must be 5 or less the next digit to the left, either 0 or 1.
The same TC number can be used to designate either the present value (PV) of
the timer or counter, or a bit that functions as the Completion Flag for the timer or
counter. This is explained in more detail in 3-8 TC Area.

Area Word designation Bit designation
IR 000 00015 (leftmost bit in word 000)

SR 252 25200 (rightmost bit in word 252)

DM DM 1250 Not possible

TC TC 215 (designates PV) TC 215 (designates completion flag)

LR LR 12 LR 1200

Word data input as decimal values is stored in binary-coded decimal (BCD);
word data entered as hexadecimal is stored in binary form. Each four bits of a
word represents one digit, either a hexadecimal or decimal digit, numerically
equivalent to the value of the binary bits. One word of data thus contains four
digits, which are numbered from right to left. These digit numbers and the corre-
sponding bit numbers for one word are shown below.

Bit number

Contents 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Digit number 3 2 1 0

When referring to the entire word, the digit numbered 0 is called the rightmost
digit; the one numbered 3, the leftmost digit.
When inputting data into data areas, it must be input in the proper form for the
intended purpose. This is no problem when designating individual bits, which

Data Structure

DataAreaStructure Section 3-2

18

are merely turned ON (equivalent to a binary value of 1) or OFF (abinary valueof
0). When inputting word data, however, it is important to input it either as decimal
or as hexadecimal, depending on what is called for by the instruction it is to be
used for. Section 5 Instruction Set specifies when a particular form of data is re-
quired for an instruction.

Binary and hexadecimal can be easily converted back and forth because each
four bits of a binary number is numerically equivalent to one digit of a hexadeci-
mal number. The binary number 0101111101011111 is converted to hexadeci-
mal by considering each set of four bits in order from the right. Binary 1111 is
hexadecimal F; binary 0101 is hexadecimal 5. The hexadecimal equivalent
would thus be 5F5F, or 24,415 in decimal (163 x 5 + 162 x 15 + 16 x 5 + 15).
Decimal and BCD are easily converted back and forth. In this case, each BCD
digit (i.e., each group of four BCD bits) is numerically equivalent of the corre-
sponding decimal digit. The BCD bits 0101011101010111 are converted to deci-
mal by considering each four bits from the right. Binary 0101 is decimal 5; binary
0111 is decimal 7. The decimal equivalent would thus be 5,757. Note that this is
not the same numeric value as the hexadecimal equivalent of
0101011101010111, which would be 5,757 hexadecimal, or 22,359 in decimal
(163 x 5 + 162 x 7 + 16 x 5 + 7).
Because the numeric equivalent of each four BCD binary bits must be numeri-
cally equivalent to a decimal value, any four bit combination numerically greater
then 9 cannot be used, e.g., 1011 is not allowedbecause it is numerically equiva-
lent to 11, which cannot be expressed as a single digit in decimal notation. The
binary bits 1011 are of course allowed in hexadecimal are a equivalent to the
hexadecimal digit C.
There are instructions provided to convert data either direction between BCD
and hexadecimal. Refer to 5-17 Data Conversion for details. Tables of binary
equivalents to hexadecimal and BCD digits are provided in the appendices for
reference.

Decimal points are used in timers only. The least significant digit represents
tenths of a second. All arithmetic instructions operate on integers only.

3-3 IR (Internal Relay) Area
The IR area is usedboth as data tocontrol I/O points, andas work bits tomanipu-
late and store data internally. It is accessible both by bit and by word. In the
C200H PC, the IR area is comprised of words 000 to 235.
Words in the IR area that are used to control I/O points are called I/O words. Bits
in I/O words are called I/O bits. Bits in the IR area which are not assigned as I/O
bits can be used as work bits. IR area work bits are reset when power is inter-
rupted or PC operation is stopped.

If a Unit brings inputs into the PC, the bit assigned to it is an input bit; if the Unit
sends an output from the PC, the bit is an output bit. To turn on an output, the
output bit assigned to it must be turned ON. When an input turns on, the input bit
assigned to it also turns ON. These facts can be used in the program to access
input status and control output status through I/O bits.

Input bits can be used to directly input external signals to thePC andcan beused
in any order in programming. Each input bit can also be used in as many instruc-
tions as required to achieve effective and proper control. They cannot be used in
instructions that control bit status, e.g., the OUTPUT, DIFFERENTIATION UP,
and KEEP instructions.

Output bits are used to output program execution results and can be used in any
order in programming. Because outputs are refreshed only once during each
cycle (i.e., once each time the program is executed), any output bit can be used

Converting Different Forms
of Data

Decimal Points

I/O Words

Input Bit Usage

Output Bit Usage

IR Area Section 3-3

19

in only one instruction that controls its status, including OUT, KEEP(11),
DIFU(13), DIFD(14) and SFT(10). If an output bit is used in more than one such
instruction, only the status determined by the last instruction will actually be out-
put from the PC.
See 5-14-1 Shift Register -- SFT(10) for an example that uses an output bit in two
‘bit-control’ instructions.

I/O words are allocated to the CPU Rack and Expansion I/O Racks by slot posi-
tion. One I/O word is allocated to each slot, as shown in the following table. Since
each slot is allocated only one I/O word, a 3-slot rack uses only the first 3 words,
a 5-slot rack uses only the first 5 words, and an 8-slot rack uses only the first 8
words. Words that are allocated to unused or nonexistent slots are available as
work words.

$ Left side of rack Right side of a 10-slot rack #

Rack Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 Slot 9 Slot 10

CPU IR 000 IR 001 IR 002 IR 003 IR 004 IR 005 IR 006 IR 007 IR 008 IR 009

1st Expansion IR 010 IR 011 IR 012 IR 013 IR 014 IR 015 IR 016 IR 017 IR 018 IR 019

2nd Expansion IR 020 IR 021 IR 022 IR 023 IR 024 IR 025 IR 026 IR 027 IR 028 IR 029

Unused Words Any words allocated to a Unit that does not use them can be used in program-
ming as work words and bits. Units that do not used the words assigned to the
slot they are mounted to include SYSMAC NET Link, SYSMAC LINK, Host Link,
PC Link, Special I/O, Remote I/O Master, High-density I/O, and Auxiliary Power
Supply Units.

Up to ten Special I/O Units may be mounted in any slot of the CPU Rack or Ex-
pansion I/O Racks. Up to five Slave Racks may be used, whether one or two
Masters are used. IR area words are allocated to Special I/O Units and Slave
Racks by the unit number on the Unit, as shown in the following tables.

Special I/O Units Slave Racks
Unit number IR address Unit number IR address
0 100 to 109 0 050 to 059
1 110 to 119 1 060 to 069
2 120 to 129 2 070 to 079
3 130 to 139 3 080 to 089
4 140 to 149 4 090 to 099
5 150 to 159
6 160 to 169
7 170 to 179
8 180 to 189
9 190 to 199

The C500-RT001/002-(P)V1 Remote I/O Slave Rack may be used, but it re-
quires 20 I/O words, not 10, and therefore occupies the I/O words allocated to 2
C200H Slave Racks, both the words allocated to the unit number set on the rack
and the words allocated to the following unit number. When using a C200H CPU
Unit, do not set the unit number on a C500 Slave Rack to 4, because there is no
unit number 5. I/O words are allocated only to installed Units, from left to right,
and not to slots as in the C200H system.

I/O words between IR 200 and IR 231 are allocated to Optical I/O Units by unit
number. The I/O wordallocated toeach Unit is IR200+n, wheren is the unit num-
ber set on the Unit.

Remote Master I/O Units, SYSMAC LINK Units, SYSMAC NET Link Units, and
Host Link Units do not use I/O words, and the PC Link Units use the LR area, so

Word Allocation for Racks

Allocation for Special I/O
Units and Slave Racks

Allocation for Optical I/O
Units

Allocation for Remote I/O
Master and Link Units

IR Area Section 3-3

20

words allocated to the slots in which these Units are mounted are available as
work words.

An I/O Unit may require anywhere from 8 to 16 bits, depending on the model.
With most I/O Units, any bits not used for input or output are available as work
bits. Transistor Output Units C200H-OD213 andC200H-OD411, as well as Triac
Output Unit C200H-OA221, however, uses bit 08 for the Blown Fuse Flag. Tran-
sistor Output Unit C200H-OD214 uses bits 08 to 11 for the Alarm Flag. Bits 08 to
15 of any word allocated to these Units, therefore, cannot be used as work bits.

Group-2 High-density I/O Units are allocated words between IR 030 and IR 049
according to I/O number settings made on them and do not use the words allo-
cated to the slots in which they are mounted. For 32-point Units, eachUnit is allo-
cated two words; for 64-point Units, each Unit is allocated four words. The words
allocated for each I/O number are in the following tables. Any words or part of
words not used for I/O can be used as work words or bits in programming.

32-point Units 64-point Units

I/O number Words I/O number Words

0 IR 30 to IR 31 0 IR 30 to IR 33

1 IR 32 to IR 33 1 IR 32 to IR 35

2 IR 34 to IR 35 2 IR 34 to IR 37

3 IR 36 to IR 37 3 IR 36 to IR 39

4 IR 38 to IR 39 4 IR 38 to IR 41

5 IR 40 to IR 41 5 IR 40 to IR 43

6 IR 42 to IR 43 6 IR 42 to IR 45

7 IR 44 to IR 45 7 IR 44 to IR 47

8 IR 46 to IR 47 8 IR 46 to IR 49

9 IR 48 to IR 49 9 Cannot be used.

When setting I/O numbers on the High-density I/O Units, be sure that the set-
tings will not cause the same words to be allocated to more than one Unit. For
example, if I/O number 0 is allocated to a 64-point Unit, I/O number 1 cannot be
used for any Unit in the system.

Group-2 High-density I/O Units are not considered Special I/O Units and do not
affect the limit to the number of Special I/O Units allowed in the System, regard-
less of the number used.

The words allocated to Group-2 High-density I/O Units correspond to the con-
nectors on the Units as shown in the following table.

Unit Word Connector/row

32-point Units First Row Ap

Second Row B
64-point Units First CN1, row Ap

Second CN1, row B

Third CN2, row A

Forth CN2, row B

Note Group-2 High-density I/O Units cannot be mounted to Slave Racks and cannot
be used with the C200H-CPU01-E, C200H-CPU03-E, and C200H-CPU11-E.

Bit Allocation for I/O Units

Allocation for Group-2
High-density I/O Units

IR Area Section 3-3

21

3-4 SR (Special Relay) Area
The SR area contains flags and control bits used for monitoring PC operation,
accessing clock pulses, and signalling errors. SR area word addresses range
from 236 through 255; bit addresses, from 23600 through 25507.

The following table lists the functions of SR area flags and control bits. Most of
these bits are described in more detail following the table. Descriptions are in
order by bit number except that Link System bits are grouped together.

Unless otherwise stated, flags are OFF until the specifiedcondition arises, when
they are turned ON. Restart bits are usually OFF, but when the user turns one
ON then OFF, the specified Link Unit will be restarted. Other control bits areOFF
until set by the user.

Word(s) Bit(s) Function

236 00 to 07 Node loop status output area for operating level 0 of
SYSMAC NET Link System

08 to 15 Node loop status output area for operating level 1 of
SYSMAC NET Link System

237 00 to 07 Completion code output area for operating level 0 following
execution of SEND(90)/RECV(98) SYSMAC
LINK/SYSMAC NET Link System

08 to 15 Completion code output area for operating level 1 following
execution of SEND(90)/RECV(98) SYSMAC
LINK/SYSMAC NET Link System

238 to 241 00 to 15 Data link status output area for operating level 0 of
SYSMAC LINK or SYSMAC NET Link System

242 to 245 00 to 15 Data link status output area for operating level 1 of
SYSMAC LINK or SYSMAC NET Link System

246 00 to 15 Not used

247 to 250 00 to 07 PC Link Unit Run Flags or data link status for operating
level 1

08 to 15 PC Link Unit Error Flags or data link status for operating
level 1

251 00 to 15 Remote I/O Error Flags

252 00 SEND(90)/RECV(98) Error Flag for operating level 0 of
SYSMAC LINK or SYSMAC NET Link System

01 SEND(90)/RECV(98) Enable Flag for operating level 0 of
SYSMAC LINK or SYSMAC NET Link System

02 Operating Level 0 Data Link Operating Flag

03 SEND(90)/RECV(98) Error Flag for operating level 1 of
SYSMAC LINK or SYSMAC NET Link System

04 SEND(90)/RECV(98) Enable Flag for operating level 1 of
SYSMAC LINK or SYSMAC NET Link System

05 Operating Level 1 Data Link Operating Flag

06 Host Computer to Rack-mounting Host Link Unit Level 1
Error Flag

07 Rack-mounting Host Link Unit Level 1 Restart Bit

08 CPU-mounting Host Link Unit Error Flag

09 CPU-mounting Host Link Unit Restart Bit

10 Not used.

11 Forced Status Hold Bit

12 Data Retention Control Bit

13 Rack-mounting Host Link Unit Level 0 Restart Bit

14 Not used.

15 Output OFF Bit

SR Area Section 3-4

22

Word(s) FunctionBit(s)

253 00 to 07 FAL number output area.

08 Low Battery Flag

09 Cycle Time Error Flag

10 I/O Verification Error Flag

11 Host Computer to rack-mounting Host Link Unit Level 0
Error Flag

12 Remote I/O Error Flag

13 Normally ON Flag

14 Normally OFF Flag

15 First cycle

254 00 1-minute clock pulse bit

01 0.02-second clock pulse bit

02 to 06 Reserved for function expansion. Do not use.

07 Step Flag

08 to 13 Reserved for function expansion. Do not use.

14 Group-2 High-density I/O Unit error Flag

15 Special Unit Error Flag (Special I/O, PC Link, Host Link,
Remote I/O Master, SYSMAC NET Link, and SYSMAC
LINK)

255 00 0.1-second clock pulse bit

01 0.2-second clock pulse bit

02 1.0-second clock pulse bit

03 Instruction Execution Error (ER) Flag

04 Carry (CY) Flag

05 Greater Than (GR) Flag

06 Equals (EQ) Flag

07 Less Than (LE) Flag

3-4-1 Remote I/O Systems
SR 25312 turns ON to indicate an error has occurred in Remote I/O Systems.
The ALARM/ERROR indicator will flash, but PC operation will continue. SR 251,
as well as AR 0014 and AR 0015, contain information on the source and type of
error. The function of each bit is described below. Refer to Optical and Wired Re-
mote I/O System Manuals for details.

If there are errors in more than one Remote I/O Unit, word 251 will contain error
information for only the first one. Data for the remaining Units will be stored in
memory and can be accessed by turning the Error Check bit ON and OFF. Be
sure to record data for the first error, which will be cleared when data for the next
error is displayed.

Not used.

Remote I/O Error Flag: Bit 03 turns ON when an error has occurred in a Remote
I/O Unit.

The content of bits 04 to 06 is a 3-digit binary number (04: 20, 05: 21, 06: 22) and
the content of bits 08 to 15 is a 2-digit hexadecimal number (08 to 11: 160, 12 to
15: 161).
If the content of bits 12 through 15 is B, an error has occurred in a Remote I/O
Master or Slave Unit, and the content of bits 08 through 11 will indicate the unit
number, either 0 or 1, of the Master involved. In this case, bits 04 to 06 contain
the unit number of the Slave Rack involved.
If the content of bits 12 through 15 is a number from 0 to 31, an error has oc-
curred in an Optical I/O Unit. The number is the unit number of the Optical I/O

Bit 00 -- Error Check Bit

Bits 01 and 02

Bit 03

Bits 04 to 15

SR Area Section 3-4

23

Unit involved, and bit 04 will be ON if the Unit is assigned leftmost word bits (08
through 15), and OFF if it is assigned rightmost word bits (00 through 07).

3-4-2 Link System Flags and Control Bits

Use of the following SR bits depends on the configuration of any Link Systems to
which your PC belongs. These flags and control bits are used when Link Units,
such as PC Link Units, SYSMAC LINK Units, Remote I/O Units, SYSMAC NET
Link Units, or Host Link Units, are mounted to the PC Racks or to the CPU. For
additional information, consult the System Manual for the particular Units in-
volved.

The following bits can be employed as work bits when the PC does not belong to
the Link System associated with them.

Host Link Systems
Both Error flags and Restart bits are provided for Host Link Systems. Error flags
turn ON to indicate errors in Host Link Units. Restart bits are turned ON and then
OFF to restart aHost Link Unit. SR bits used withHost Link Systems aresumma-
rized in the following table. Rack-mounting Host Link Unit Restart bits are
not effective for the Multilevel Rack-mounting Host Link Units. Refer to the
Host Link System Manual for details.

Bit Flag

25206 Rack-mounting Host Link Unit Level 1 Error Flag

25207 Rack-mounting Host Link Unit Level 1 Restart Bit

25208 CPU-mounting Host Link Unit Error Flag

25209 CPU-mounting Host Link Unit Restart Bit

25213 Rack-mounting Host Link Unit Level 0 Restart Bit

25311 Rack-mounting Host Link Unit Level 0 Error Flag

SYSMAC NET Link and SYSMAC LINK Systems
SR 25200 turns ON to indicate an error has occurred in level 0, while using
SEND(90) or RECV(98) to transfer data in either a SYSMAC NET Link or SYS-
MAC LINK System. SR 25203 indicates an error has occurred in level 1. Turning
ON SR 25201 enables SEND(90) and RECV(98) in level 0 in these Systems.
Turning ON SR 25204 enables SEND(90) and RECV(98) in level 1. SR 25202
turns ON when a data link is active in operating level 0 of either of these Systems
and SR 25205 turns ON with a data link is active in operating level 1. These flags
and corresponding SR bits are shown below.

Bit Flag

25200 Operating Level 0 SEND(90)/RECV(98) Error Flag

25201 Operating Level 0 SEND(90)/RECV(98) Enable Flag

25202 Operating Level 0 Data Link Operating Flag

25203 Operating Level 1 SEND(90)/RECV(98) Error Flag

25204 Operating Level 1 SEND(90)/RECV(98) Enable Flag

25205 Operating Level 1 Data Link Operating Flag

SR Area Section 3-4

24

SR 236 contains the SYSMAC NET Link Loop Status Flags. Bits 00 through 07
are the Loop Status Flags for operating level 0, and bits 08 through 15 are the
Flags for operating level 1. The bit functions are shown below.

111 1

Level 0: 07 06 05 04 03 02 01 00
Level 1: 15 14 13 12 11 10 09 08

Central Power Supply Unit:
0: Power supply connected.
1: Power supply not
connected.

Transmission status:
0: Reception possible
1: Reception not
possible

Loop status:
11: Normal loop
10: Lower back loop
01: Upper back loop
00: Loop error

When SEND(90) or RECV(98) is used in aSYSMAC LINK System, acompletion
code is output to SR 23700 through SR 23707 for level 0, or SR 23708 through
SR 23715 for level 0, to indicate whether or not the data transfer was completed
successfully and to indicate the natureof theerror whencommunications arenot
completed successfully. These error codes are as follows.

SYSMAC LINK Systems
Completion

code
Name Meaning

00 Normal end Data transfer was completed successfully.

01 Parameter error SEND(90)/RECV(98) instruction operands are not within specified
ranges.

02 Transmission impossible The System was reset during execution of the instruction or the
destination node is not in the System.

03 Destination not in System The destination node is not in the System.

04 Busy error The destination node is busy and cannot receive the transfer.

05 Response timeout A response was not received within the time limit.

06 Response error An error response was received from the destination node.

07 Communications controller
error

An error occurred in the communications controller.

08 Setting error The node address was set incorrectly.

09 CPU error A CPU error occurred in the PC of the destination node.

SYSMAC NET Link Systems

Completion
code

Name Meaning

00 Normal end Data transfer was completed successfully.

01 Parameter error SEND(90)/RECV(98) instruction operands are not within specified ranges.

02 Transmission impossible The System was reset during execution of the instruction or the destination
node is not in the System.

03 Busy error The destination node is busy and cannot receive the transfer.

04 Transmission error The line server token was not received.

05 Loop error An error occurred in the transmission loop.

06 No response Destination node does not exist or response was not received within the
time limit.

07 Response error Incorrect response format.

SYSMAC LINK/SYSMAC NET Link Data link status is output to SR 238 through
SR 241 for the operating level 0 data link, and to SR 242 through SR 245 for the
operating level 1 data link in the SYSMAC NET Link or SYSMAC LINK System.

SYSMAC NET Link Loop
Status Output

Communications
Completion Code (CPU31-E
Only)

Data Link Status (CPU31-E
Only)

SR Area Section 3-4

25

The meaning of each bit in these areas differs depending on whether the data
link is in a SYSMAC LINK System or SYSMAC NET Link System, as shown be-
low.

SYSMAC LINK Systems
Level 0 Level 1 Bits

00 to 03 04 to 07 08 to 11 12 to 15

SR 238 SR 242 Node 1 Node 2 Node 3 Node 4

SR 239 SR 243 Node 5 Node 6 Node 7 Node 8

SR 240 SR 244 Node 9 Node 10 Node 11 Node 12

SR 241 SR 245 Node 13 Node 14 Node 15 Node 16

Each of the above sets of four bits operates as shown below.

Leftmost bit Middle bits Rightmost bit

ON when data link is active. ON when there is a data
communications error.

ON when there is a PC
error.

ON when PC is in RUN
mode.

SYSMAC NET Link Systems
Level 0 Level 1 Bit numbers in header/Registration number in the data link table

PC Run Flags PC Error Flags

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

SR 238 SR 242 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

SR 239 SR 243 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16

SR 240 SR 244 17 18 19 20 21 22 23 24 17 18 19 20 21 22 23 24

SR 241 SR 245 25 26 27 28 29 30 31 32 25 26 27 28 29 30 31 32

PC Link Systems
When the PC belongs to a PC Link System, words 247 through 250 are used to
monitor the operating status of all PC Link Units connected to the PC Link Sys-
tem. This includes a maximum of 32 PC Link Units. If the PC is in a Multilevel PC
Link System, half of the PCLink Units will be in aPC Link Subsystem inoperating
level 0; the other half, in a Subsystem in operating level 1. The actual bit assign-
ments depend on whether the PC is in a Single-level PC Link System or a Multi-
level PC Link System. Refer to the PC Link System Manual for details. Error and
Run Flag bit assignments are described below.
Bits 00 through 07 of each word are the Run flags, which are ON when the PC
Link Unit is in RUN mode. Bits 08 through 15 are the Error flags, which are ON
when an error has occurred in the PC Link Unit. The following table shows bit
assignments for Single-level and Multi-level PC Link Systems.

PC Link Unit Error and Run
Flags

SR Area Section 3-4

26

Single-level PC Link Systems
Flag type Bit no. SR 247 SR 248 SR 249 SR 250

Run flags 00 Unit #24 Unit #16 Unit #8 Unit #0

01 Unit #25 Unit #17 Unit #9 Unit #1

02 Unit #26 Unit #18 Unit #10 Unit #2

03 Unit #27 Unit #19 Unit #11 Unit #3

04 Unit #28 Unit #20 Unit #12 Unit #4

05 Unit #29 Unit #21 Unit #13 Unit #5

06 Unit #30 Unit #22 Unit #14 Unit #6

07 Unit #31 Unit #23 Unit #15 Unit #7

Error flags 08 Unit #24 Unit #16 Unit #8 Unit #0

09 Unit #25 Unit #17 Unit #9 Unit #1

10 Unit #26 Unit #18 Unit #10 Unit #2

11 Unit #27 Unit #19 Unit #11 Unit #3

12 Unit #28 Unit #20 Unit #12 Unit #4

13 Unit #29 Unit #21 Unit #13 Unit #5

14 Unit #30 Unit #22 Unit #14 Unit #6

15 Unit #31 Unit #23 Unit #15 Unit #7

Multilevel PC Link Systems
Flag type Bit no. SR 247 SR 248 SR 249 SR 250

Run flags 00 Unit #8,
level 1

Unit #0,
level 1

Unit #8,
level 0

Unit #0,
level 0

01 Unit #9,
level 1

Unit #1,
level 1

Unit #9,
level 0

Unit #1,
level 0

02 Unit #10,
level 1

Unit #2,
level 1

Unit #10,
level 0

Unit #2,
level 0

03 Unit #11,
level 1

Unit #3,
level 1

Unit #11,
level 0

Unit #3,
level 0

04 Unit #12,
level 1

Unit #4,
level 1

Unit #12,
level 0

Unit #4,
level 0

05 Unit #13,
level 1

Unit #5,
level 1

Unit #13,
level 0

Unit #5,
level 0

06 Unit #14,
level 1

Unit #6,
level 1

Unit #14,
level 0

Unit #6,
level 0

07 Unit #15,
level 1

Unit #7,
level 1

Unit #15,
level 0

Unit #7,
level 0

Error flags 08 Unit #8,
level 1

Unit #0,
level 1

Unit #8,
level 0

Unit #0,
level 0

09 Unit #9,
level 1

Unit #1,
level 1

Unit #9,
level 0

Unit #1,
level 0

10 Unit #10,
level 1

Unit #2,
level 1

Unit #10,
level 0

Unit #2,
level 0

11 Unit #11,
level 1

Unit #3,
level 1

Unit #11,
level 0

Unit #3,
level 0

12 Unit #12,
level 1

Unit #4,
level 1

Unit #12,
level 0

Unit #4,
level 0

13 Unit #13,
level 1

Unit #5,
level 1

Unit #13,
level 0

Unit #5,
level 0

14 Unit #14,
level 1

Unit #6,
level 1

Unit #14,
level 0

Unit #6,
level 0

15 Unit #15,
level 1

Unit #7,
level 1

Unit #15,
level 0

Unit #7,
level 0

If the PC is in a Multilevel PC Link System and the content of word 248 is 02FF,
then PC Link Units #0 through #7 of in the PC Link Subsystem assigned operat-

Application Example

SR Area Section 3-4

27

ing level 1 would be in RUN mode, and PC Link Unit #1 in the same Subsystem
would have an error. The hexadecimal digits and corresponding binary bits of
word 248 would be as shown below.

Bit no. 15 00. .

Binary 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1

Hex 0 2 F F

3-4-3 Forced Status Hold Bit
SR 25211 determines whether or not the status of bits that have been force-set
or force-reset is maintained when switching between PROGRAM and MONI-
TOR mode to start or stop operation. If SR 25211 is ON, bit status will be main-
tained; if SR 25211 is OFF, all bits will return to default status when operation is
started or stopped. The Force Status HoldBit is only effectivewhen enabledwith
the Set System instruction (SYS(49)).
The status of SR 25211 in not affected by a power interruption unless the I/O
table is registered; in that case, SR 25211 will go OFF.
SR 25211 is not effective when switching to RUN mode.
SR 25211 should be manipulated from a Peripheral Device, e.g., a Program-
ming Console or FIT.

The status of SR 25211 and thus the status of force-set/force-reset bits can be
maintained when power is turned off and on by inserting the Set System instruc-
tion (SYS(49)) in the program as step 00000 with the proper operand. If SYS(49)
is used in this way, the status of SR 25211 will be preserved when power is
turned off and on. If this is done and SR 25211 is ON, then the status of force-set/
force-reset bits will also be preserved, as shown in the following table. The useof
SYS(49) does not affect operation when switching to run mode, i.e., force-set/
force-reset bits always return to default status when switching to RUN mode.

Status before shutdown Status at next startup

SR 25211 SYS(49) SR 25211 Force-set/reset bits

ON Executed ON Status maintained

Not executed OFF Default status

OFF Executed OFF Default status

Not executed OFF Default status

Refer to Section 5 Instruction Set for details on SYS(49).

3-4-4 I/O Status Hold Bit
SR 25212 determines whether or not the status of IR and LR area bits is main-
tained when operation is started or stopped, when operation begins by switching
from PROGRAM mode to MONITOR or RUN modes. If SR 25212 is ON, bit sta-
tus will be maintained; if SR 25212 is OFF, all IR and LR area bits will be reset.
The I/O Status HoldBit is effective only if enabledwith theSet System instruction
(SYS(49)).
The status of SR 25211 in not affected by a power interruption unless the I/O
table is registered; in that case, SR 25211 will go OFF.
SR 25212 can be turned ON from the program using the Output instruction, or it
can be turned ON from a Peripheral Device.

The status of SR 25212 and thus the status of IR and LR area bits can be main-
tained when power is turned off and on by inserting the System Operation in-
struction (SYS(49)) into the program as step 00000 with the proper operand. If
SYS(49) is used in this way, the status of SR 25212 will be preserved when pow-
er is turned off and on. If this is done and SR 25212 is ON, then the status of IR
and LR area bits will also be preserved, as shown in the following table.

Maintaining Status during
Startup

Maintaining Status during
Startup

SR Area Section 3-4

28

Status before shutdown Status at next startup

SR 25212 SYS(49) SR 25212 IR and LR bits

ON Executed ON Status maintained

Not executed OFF Reset

OFF Executed OFF Reset

Not executed OFF Reset

Refer to Section 5 Instruction Set for details on SYS(49).
The status of the Data RetentionControl bit is maintained for power interruptions
or when PC operation is stopped.

3-4-5 Output OFF Bit
SR bit 25215 is turned ONto turnOFF all outputs from the PC. The OUT INHIBIT
indicator on the front panel of the CPUwill light. When theOutput OFF Bit is OFF,
all output bits will be refreshed in the usual way.
The status of the Output OFF Bit is maintained for power interruptions or when
PC operation is stopped, unless the I/O table has been registered, or the I/O
table has been registered and either the Force Status Hold Bit or the I/O Status
Hold Bit has not been enabled with SYS(49).

3-4-6 FAL (Failure Alarm) Area
A 2-digit BCD FAL code is output to bits 25300 to 25307 when the FAL or FALS
instruction is executed. These codes are user defined for use in error diagnosis,
although the PC also outputs FAL codes to these bits, such as one caused by
battery voltage drop.
This area can be reset by executing the FAL instruction with an operand of 00 or
by performing a Failure Read Operation from the Programming Console.

3-4-7 Low Battery Flag
SR bit 25308 turns ON if the voltage of the RAM Unit, EEPROM Unit, or
CPU31-E backup battery drops. The ALARM/ERROR indicator on the front of
the CPU will also flash.
AR bit 2404 is a separate Low Battery Flag for the CPU31-E only. It is therefore
possible to determine which backup battery is low, that of the RAM Unit or
CPU31-E, by checking the status of AR 2404.
This bit can be programmed to activate anexternal warning for a low battery volt-
age.
The Set System instruction (SYS(49)) can be used to turnoff theoperation of the
battery alarm if desired, e.g., when DM 1000 to DM 1999 is placed in ROM and a
battery is not used in operation. Refer to Section 5 Instruction Set for details.

3-4-8 Cycle Time Error Flag
SR bit 25309 turns ON if the cycle time exceeds 100 ms. The ALARM/ERROR
indicator on the front of the CPU will also flash. Program execution will not stop,
however, unless the maximum time limit set for the watchdog timer is exceeded.
Timing may become inaccurate after the cycle time exceeds 100 ms.

3-4-9 I/O Verification Error Flag
SR bit 25310 turns ON when the Units mounted in the system disagree with the
I/O table registered in theCPU. TheALARM/ERROR indicator on the front of the
CPU will also flash, but PC operation will continue.
To ensure proper operation, PC operation should be stopped, Units checked,
and the I/O table corrected whenever this flag goes ON.

SR Area Section 3-4

29

3-4-10 First Cycle Flag
SR bit 25315 turns ON when PC operation begins and then turns OFF after one
cycle of the program. The First Cycle Flag is useful in initializing counter values
and other operations. An example of this is provided in 5-13 Timer and Counter
Instructions.

3-4-11 Clock Pulse Bits
Five clock pulses are available to control program timing. Each clock pulse bit is
ON for the first half of the rated pulse time, then OFF for the second half. In other
words, each clock pulse has a duty factor of 50%.
These clock pulse bits are often used with counter instructions to create timers.
Refer to 5-13 Timer and Counter Instructions for an example of this.

Pulse width 1 min 0.02 s 0.1 s 0.2 s 1.0 s

Bit 25400 25401 25500 25501 25502

Bit 25400
1-min clock pulse

Bit 25401
0.02-s clock pulse

Bit 25500
0.1-s clock pulse

Bit 25501
0.2-s clock pulse

Bit 25502
1.0-s clock pulse Caution:

Because the 0.1-second and
0.02-second clock pulse bits have
ON times of 50 and 10 ms, respec-
tively, the CPU may not be able to
accurately read the pulses if pro-
gram execution time is too long.

0.1 s

.05 s .05 s

1.0 s

0.5 s 0.5 s

0.2 s

0.1 s 0.1 s

1 min.

30 s 30 s

.02 s

.01 s .01 s

3-4-12 Step Flag
SR bit 25407 turns ON for one cycle when step execution is started with the
STEP(08) instruction.

3-4-13 Group-2 High-density I/O Unit Error Flag
SR bit 25414 turns ON for any of the following errors for Group-2 High-density
I/O Units: the sameI/O number set twice, the samewords allocated to more than
one Unit, refresh errors. If one of these errors occurs, the Unit will stop operation
and the ALARM indicator will flash, but the overall PC will continue operation.
When the Group-2 High-density I/O Unit Error Flag is ON, the number of the Unit
with the error will be provided in AR 0205 to AR 0214. If the Unit cannot be
started properly even though the I/O number is set correctly and the Unit is
installed properly, a fuse may be blown or the Unit may contain a hardware fail-
ure. If this should occur, replace the Unit with a spare and try to start the system
again.
There is also an error flag for High-density I/O Units in the AR area, AR 0215.

SR Area Section 3-4

!

30

3-4-14 Instruction Execution Error Flag, ER
SR bit 25503 turns ON if an attempt is made to execute an instruction with incor-
rect operand data. Common causes of an instruction error are non-BCD oper-
and data when BCD data is required, or an indirectly addressed DM word that is
non-existent. When the ER Flag is ON, the current instruction will not be
executed.

3-4-15 Arithmetic Flags
The following flags are used in data shifting, arithmetic calculation, and compari-
son instructions. They are generally referred to only by their two-letter abbrevia-
tions.

Caution These flags are all reset when the END(01) instruction is executed, and there-
fore cannot be monitored from a programming device.

Refer to 5-14 Data Shifting, 5-16 Data Comparison, 5-18 BCD Calculations, and
5-19 Binary Calculations for details.

SR bit 25504 turns ON when there is a carry in the result of an arithmetic opera-
tion or when a rotate or shift instruction moves a “1” into CY. The content of CY is
also used in some arithmetic operations, e.g., it is added or subtracted along
with other operands. This flag can be set and cleared from the program using the
Set Carry and Clear Carry instructions.

SR bit 25505 turns ON when the result of a comparison shows the first of two
operands to be greater than the second.

SR bit 25506 turns ON when the result of a comparison shows two operands to
be equal or when the result of an arithmetic operation is zero.

SR bit 25507 turns ON when the result of a comparison shows the first of two
operands to be less than the second.

Note The four arithmetic flags are turned OFF when END(01) is executed.

3-5 AR (Auxiliary Relay) Area
AR word addresses extend from AR 00 to AR 27; AR bit addresses extend from
AR 0000 to AR 2715. Most AR area words and bits are dedicated to specific
uses, such as transmission counters, flags, and control bits, and words AR 00
through AR 06 and AR 23 through AR 27 cannot be used for any other purpose.
Words and bits from AR 07 to AR 22 are available as work words and work bits if
not used for the following assigned purposes.

Word Use

AR 0713 to AR 0715 Error History Area

AR 07 to AR 15 SYSMAC LINK Units

AR 16, AR 17 SYSMAC LINK and SYSMAC NET Link Units

AR 18 to AR 21 Calendar/clock Area

AR 0708, AR 22 TERMINAL Mode Key Bits

The AR area retains status during power interruptions, when switching from
MONITOR or RUN mode to PROGRAM mode, or when PC operation is
stopped. Bit allocations are shown in the following table and described in the fol-
lowing pages in order of bit number.

Carry Flag, CY

Greater Than Flag, GR

Equal Flag, EQ

Less Than Flag, LE

AR Area Section 3-5

31

AR Area Flags and Control Bits

Word(s) Bit(s) Function

00 00 to 09 Error Flags for Special I/O Units 0 to 9 (also function as Error Flags for PC Link Units)

10 Error Flag for operating level 1 of SYSMAC LINK or SYSMAC NET Link System

11 Error Flag for operating level 0 of SYSMAC LINK or SYSMAC NET Link System

12 Host Computer to Rack-mounting Host Link Unit Level 1 Error Flag

13 Host Computer to Rack-mounting Host Link Unit Level 0 Error Flag

14 Remote I/O Master Unit 1 Error Flag

15 Remote I/O Master Unit 0 Error Flag

01 00 to 09 Restart Bits for Special I/O Units 0 to 9 (also function as Restart Bits for PC Link Units)

10 Restart Bit for operating level 1 of SYSMAC LINK or SYSMAC NET Link System

11 Restart Bit for operating level 0 of SYSMAC LINK or SYSMAC NET Link System

12, 13 Not used.

14 Remote I/O Master Unit 1 Restart Bit

15 Remote I/O Master Unit 0 Restart Bit

02 00 to 04 Slave Rack Error Flags

05 to 15 Group-2 High-density I/O Unit Error Flags

03 00 to 15 Error Flags for Optical I/O Units 0 to 7

04 00 to 15 Error Flags for Optical I/O Units 8 to 15

05 00 to 15 Error Flags for Optical I/O Units 16 to 23

06 00 to 15 Error Flags for Optical I/O Units 24 to 31

07 00 to 03 Data Link setting for operating level 0 of SYSMAC LINK System

04 to 07 Data Link setting for operating level 1 of SYSMAC LINK System

08 TERMINAL Mode Input Cancel Bit

09 to 12 Not used.

13 Error History Overwrite Bit

14 Error History Reset Bit

15 Error History Enable Bit

08 to 11 00 to 15 Active Node Flags for SYSMAC LINK System nodes of operating level 0

12 to 15 00 to 15 Active Node Flags for SYSMAC LINK System nodes of operating level 1

16 00 to 15 SYSMAC LINK/SYSMAC NET Link System operating level 0 service time per cycle

17 00 to 15 SYSMAC LINK/SYSMAC NET Link System operating level 1 service time per cycle

18 to 21 00 to 15 Calendar/clock Area

22 00 to 15 TERMINAL Mode Key Bits

23 00 to 15 Power Off Counter

24 00 to 03 Not used.

04 CPU Unit Low Battery Flag (only for the C200H-CPU31-E)

05 Cycle Time Flag

06 SYSMAC LINK System Network Parameter Flag for operating level 1

07 SYSMAC LINK System Network Parameter Flag for operating level 0

08 SYSMAC/SYSMAC NET Link Unit Level 1 Mounted Flag

09 SYSMAC/SYSMAC NET Link Unit Level 0 Mounted Flag

10 Not used.

11 PC Link System Level 1 Mounted Flag

12 PC Link System Level 0 Mounted Flag

13 Rack-mounting Host Link Unit Level 1 Mounted Flag

14 Rack-mounting Host Link Unit Level 0 Mounted Flag

15 CPU-mounting Device Mounted Flag

25 00 to 15 FALS-generating Address

AR Area Section 3-5

32

Word(s) FunctionBit(s)

26 00 to 15 Maximum Cycle Time

27 00 to 15 Present Cycle Time

3-5-1 Slave Rack Error Flags

AR bits 0200 to AR 0204 correspond to the unit numbers of Remote I/O Slave
Units #0 to 4. These flags will turn ON if the same number is allocated to more
then one Slave or if a transmission error occurs when starting the System. Refer
to SR 251 for errors that occur after the System has started normally.

3-5-2 Group-2 High-density I/O Unit Error Flags

AR bits 0205 to AR 0215 correspond to Group-2 High-density I/O Units 0 to 9
(I/O numbers) and will turn ON when the same number is set for more than one
Unit, when the same word is allocated to more than one Unit, when I/O number 9
is set for a 64-point Unit, or when the fuse burns out in a Transistor High-density
I/O Unit. AR bit 0215 will turn ON when a Unit is not recognized as a Group-2
High-density I/O Unit.

3-5-3 Optical I/O Unit Error Flags

AR 03 through AR 06 contain the Error Flags for Optical I/O Units. An error indi-
cates a duplication of a unit number. Up to 64 Optical I/O Units can be connected
to the PC. Units are distinguished by unit number, 0 through 31, and a letter, L or
H. Bits are allocated as shown in the following table.

Bits AR03
allocation

AR04
allocation

AR05
allocation

AR06
allocation

00 0 L 8 L 16 L 24 L

01 0 H 8 H 16 H 24 H

02 1 L 9 L 17 L 25 L

03 1 H 9 H 17 H 25 H

04 2 L 10 L 18 L 26 L

05 2 H 10 H 18 H 26 H

06 3 L 11 L 19 L 27 L

07 3 H 11 H 19 H 27 H

08 4 L 12 L 20 L 28 L

09 4 H 12 H 20 H 28 H

10 5 L 13 L 21 L 29 L

11 5 H 13 H 21 H 29 H

12 6 L 14 L 22 L 30 L

13 6 H 14 H 22 H 30 H

14 7 L 15 L 23 L 31 L

15 7 H 15 H 23 H 31 H

3-5-4 SYSMAC LINK System Data Link Settings

AR 0700 to AR 0703 and AR 0704 to AR 0707 areused todesignate wordalloca-
tions for operating levels 0 and 1 of the SYSMAC LINK System. Allocation can
be set to occur either according to settings from an FIT or automatically in the LR

AR Area Section 3-5

33

and/or DM areas. If automatic allocation is designated, the number of words to
be allocated to each node is also designated. These settings are shown below.

External/Automatic Allocation
Operating level 0 Operating level 1 Setting

AR 0700 AR 0701 AR 0704 AR 0705

0 0 0 0 Words set externally (FIT)

1 0 1 0 Automatic LR area only

0 1 0 1 allocation DM area only

1 1 1 1 LR and DM
areas

Words per Node
The following setting is necessary if automatic allocation is designated above.

Operating level 0 Operating level 1 Words per node Max. no.

AR 0702 AR 0703 AR 0706 AR 0707 LR area DM area of nodes

0 0 0 0 4 8 16

1 0 1 0 8 16 8

0 1 0 1 16 32 4

1 1 1 1 32 64 2

The above settings are read every cycle while the SYSMAC LINK System is in
operation.

3-5-5 Error History Bits
AR 0713 (Error History Overwrite Bit) is turned ON or OFF by the user to control
overwriting of records in the Error History Area in the DM area. TurnAR 0713ON
to overwrite the oldest error record each time an error occurs after 10 have been
recorded. Turn OFF AR 0713 to store only the first 10 records that occur each
time after the history area is cleared.
AR 0714 (Error History Reset Bit) is turned ON and then OFF by theuser to reset
the Error Record Pointer (DM 0969) and thus restart recording error records at
the beginning of the history area.
AR 0715 (Error History Enable Bit) is turned ON by the user toenable error histo-
ry storage and turned OFF to disable error history storage.
Refer to 3-6 DM Area for details on the Error History Area.
Error history bits are refreshed each cycle.

3-5-6 Active Node Flags
AR 08 through AR 11 and AR 12 through AR 15 provide flags that indicate which
nodes are active in the SYSMAC LINK System at the current time. These flags
are refreshed every cycle while the SYSMAC LINK System is operating.
The body of the following table show the node number assigned to eachbit. If the
bit is ON, the node is currently active.

Level 0 Level 1 Bit (body of table shows node numbers)

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

AR 08 AR 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

AR 09 AR 13 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

AR 10 AR 14 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

AR 11 AR 15 49 50 51 52 53 54 55 56 57 58 59 60 61 62 * **

*Communication Controller Error Flag
**EEPROM Error Flag

AR Area Section 3-5

34

3-5-7 SYSMAC LINK/SYSMAC NET Link System Service Time (CPU31-E
Only)

AR 16 provides the time allocated to servicing operating level 0 of the SYSMAC
LINK System and/or SYSMACNET Link System duringeach cyclewhen aSYS-
MAC LINK Unit and/or SYSMAC NET Link Unit is mounted to a Rack.
AR 17 provides the time allocated to servicing operating level 1 of the SYSMAC
LINK System and/or SYSMACNET Link System duringeach cyclewhen aSYS-
MAC LINK Unit and/or SYSMAC NET Link Unit is mounted to a Rack.
These times are recorded in 4-digit BCD to tenths of a millisecond (000.0 ms to
999.9 ms) and are refreshed every cycle.

Bits

15 to 12 11 to 08 07 to 04 03 to 00

102 101 100 10--1

3-5-8 Calendar/Clock Area and Bits
Calendar/Clock Area If AR 2114 (Stop Bit) is OFF, then the date, day, and time will be available in BCD

in AR 18 to AR 20 and AR 2100 to AR 2108 as shown below. This area can also
be controlled with AR 2113 (Seconds Round-off Bit) and AR 2115 (Set Bit).

Bits Contents Possible values

AR 1800 to AR 1807 Seconds 00 to 99

AR 1808 to AR 1815 Minutes 00 to 59

AR 1900 to AR 1907 Hours 00 to 23 (24-hour system)

AR 1908 to AR 1915 Day of month 01 to 31 (adjusted by month and for leap year)

AR 2000 to AR 2007 Month 1 to 12

AR 2008 to AR 2015 Year 00 to 99 (Rightmost two digits of year)

AR 2100 to AR 2107 Day of week 00 to 06 (00: Sunday; 01: Monday; 02: Tuesday; 03: Wednesday; 04:
Thursday; 05: Friday; 06: Saturday)

Seconds Round-off Bit AR 2113 is turned ON to round the seconds of the Calendar/clock Area to zero,
i.e., if the seconds is 29 or less, it is merely set to 00; if the seconds is 30 or great-
er, the minutes is incremented by 1 and the seconds is set to 00.

Stop Bit AR 2114 is turned OFF to enable the operation of the Calendar/clock Area and
ON to stop the operation.

Set Bit AR 2115 is used to set the Calendar/clock Area as described below. This data
must be in BCD and must be set within the limits for the Calendar/clock Area
given above.

1,2,3... 1. Turn ON AR 2114 (Stop Bit).
2. Set the desired date, day, and time, being careful not to turn OFF AR 2114

(Stop Bit) when setting the day of the week (they’re in the same word). (On
the Programming Console, the Bit/Digit Monitor and Force Set/Reset Oper-
ations are the easiest ways to set this data.)

Note A more convenient way is if steps 1 and 2 are executed simulta-
neously as follows.

Set 4000 to 4006 with present value change.

Stop bit ON data

3. Turn ON AR 2114 (Reset Bit). The Calendar/clock will automatically start
operating with the designated settings and AR 2114 and AR 2115 will both
be turned OFF.

The Calendar/clock Area and Bits are refreshed each cycle while operational.

AR Area Section 3-5

35

Clock Accuracy Clock accuracy is affected by the ambient temperature as shown in the following
table.

Ambient
temperature

Accuracy (loss or
gain per month)

55%C --3 to 0 minutes

25%C &1 minute

0%C --2 to 0 minutes

Note A clock is built into the C200H-CPU31-E, enabling the clock regardless of the
Memory Unit that is mounted. The following Memory Units must be mounted to
use the clock with other CPUs: C200H-MR433/MR833/ME432/ME832.

3-5-9 TERMINAL Mode Key Bits
If the Programming Console is mounted to the PC and is in TERMINAL mode,
any inputs on keys 0 through 9 (including characters A through F, i.e, keys 0
through 5 with SHIFT) will turn on a corresponding bit in AR 22. TERMINAL
mode is entered either through Programming Console operations or by execut-
ing KEY(62).
The bits in AR 22 correspond to Programming Console inputs as follows:

Bit Programming Console input

AR 2200 0

AR 2201 1

AR 2202 2

AR 2203 3

AR 2204 4

AR 2205 5

AR 2206 6

AR 2207 7

AR 2208 8

AR 2209 9

AR 2210 A

AR 2211 B

AR 2212 C

AR 2213 D

AR 2214 E

AR 2215 F

Refer to Section 5 Instruction Set for details on KEY(62) and to Section 7 Pro-
gram Monitoring and Execution for details on the TERMINAL mode.

3-5-10 Power-OFF Counter
AR 23 provides in 4-digit BCD the number of times that the PC power has been
turned off. This counter can be reset as necessary using the PV Change 1 op-
eration from the Programming Console. (Refer to 7-1-4 Hexadecimal/BCD Data
Modification for details.) The Power-OFF Counter is refreshed every time power
is turned on.

3-5-11 CPU Low Battery Flag
AR 2404 is the Battery Alarm Flag for the CPU31-E backup battery.
AR 2404 is refreshed every cycle while the PC is in RUN or MONITOR mode.

3-5-12 SCAN(18) Cycle Time Flag
AR 2405 turns ON when the cycle time set with SCAN(18) is shorter than the
actual cycle time.

AR Area Section 3-5

36

AR 2405 is refreshed every cycle while the PC is in RUN or MONITOR mode.

3-5-13 Network Parameter Flags
AR 2406 is ON when the actual setting of the network parameter for operating
level 1 of the SYSMAC LINK System differs from the setting at the FIT.
AR 2407 is ON when the actual setting of the network parameter for operating
level 0 of the SYSMAC LINK System differs from the setting at the FIT.

3-5-14 Link Unit Mounted Flags
The following flags indicate when the specified Link Units are mounted to the
Racks. (Refer to 3-5-15 CPU-mounting Device Flag for CPU-mounting Host
Link Units.) These flags are refreshed every cycle.

Name Bit Link Unit

SYSMAC LINK/SYSMAC NET Link Unit
Level 1 Mounted Flag

AR 2408 SYSMAC LINK/SYSMAC NET Link Unit in operating level 1

SYSMAC LINK/SYSMAC NET Link Unit
Level 0 Mounted Flag

AR 2409 SYSMAC LINK/SYSMAC NET Link Unit in operating level 0

PC Link Unit Level 1 AR 2411 PC Link Unit in operating level 1

PC Link Unit Level 0 AR 2412 PC Link Unit in operating level 0

Rack-mounting Host Link Unit Level 1 AR 2413 Rack-mounting Host Link Unit in operating level 1

Rack-mounting Host Link Unit Level 0 AR 2414 Rack-mounting Host Link Unit in operating level 0

3-5-15 CPU-mounting Device Flag
AR 2415 turns ON when any device is mounted directly to the CPU. This in-
cludes CPU-mounting Host Link Units, Programming Consoles, and Interface
Units. This flag is refreshed every cycle.

3-5-16 FALS-generating Address
AR 25 contains the address generatinga user-programmedFALS codeor asys-
tem FALS code 9F (cycle time error). The address is in 4-digit BCD. FALS codes
are described in 5-23-1 FAILURE ALARM -- FAL(06) and SEVERE FAILURE
ALARM -- FALS(07). The address is refreshed every cycle when an FALS code
has been generated.

3-5-17 Cycle Time Indicators
AR26contains themaximum cycle time that has occurredsince program execu-
tion was begun. AR 27 contains the present cycle time.
Both times are to tenths of a millisecond in 4-digit BCD (000.0 ms to 999.9 ms),
and are refreshed every cycle.

3-6 DM (Data Memory) Area
The DM area is divided into various parts as described in the following table.

Addresses User
read/write

Usage

DM 0000 to DM 0968 Read/write General User Area

DM 0969 to DM 0999 Read/write Error History Area (CPU31-E only)

DM 1000 to DM 1999 Read only Special I/O Unit Data Area

Although composed of 16-bit words like any other data area, all data in any part
of the DM area cannot be specifiedby bit for use in instructions with bit operands.
DM 0000 to DM 0999 can be written to by the program, but DM 1000 to DM 1999
can only be written to using a peripheral programming device, such as a Pro-
gramming Console, GPC, FIT, or SYSMATE software.

DM Area Section 3-6

37

The DM area retains status during power interruptions.

Indirect Addressing Normally, when the content of a data area word is specified for an instruction, the
instruction is performed directly on the content of that word. For example, sup-
pose MOV(21) is performed with DM 0100 as the first operand and LR 20 as the
second operand. When this instruction is executed, the content of DM 0100 is
moved to LR 20.
It is possible, however, to use indirect DM addresses as the operands for many
instructions. To indicate an indirect DM address, *DM is input with the address of
the operand. With an indirect address, withcontent of this operanddoes not con-
tain the actual data to be used. Instead, it’s contents is assumed to hold the ad-
dress of another DM word, the content of which will actually be used in the in-
struction. If *DM 0100 was used in our example above and the content of DM
0100 is 0324, then*DM 0100actually means that thecontent of DM 0324 is tobe
used as the operand in the instruction, and the content of DM 0324 will be moved
to LR 20.

MOV(21)

*DM 0100

LR 00

Word Content
DM 0099 4C59
DM 0100 0324
DM 0101 F35A

DM 0324 5555
DM 0325 2506
DM 0326 D541

5555 moved
to LR 00.

Indicates
DM 0324

Indirect
address

Error History Area DM 0969 to DM 0999 are used to store up to 10 records that show the nature,
time, and date of errors that have occurred in the PC. The time and date entries
in these records are only recorded in PCs that are equipped with the calendar/
clock function.
TheError History Areawill storesystem-generated or FAL(06)/FALS(07)-gener-
ated error codes whenever AR 0715 (Error History Enable Bit) is ON. Refer to
Section 8 Troubleshooting for details on error codes.

Area Structure Error records occupy three words each stored between DM 0970 and DM 0999.
The last record that was stored can be obtained via the content of DM 0969 (Er-
ror Record Pointer). The recordnumber, DM words, andpointer value for eachof
the ten records are as follows:

Record Addresses Pointer value

None N.A. 0000

1 DM 0970 to DM 0972 0001

2 DM 0973 to DM 0975 0002

3 DM 0976 to DM 0978 0003

4 DM 0979 to DM 0981 0004

5 DM 0982 to DM 0984 0005

6 DM 0985 to DM 0987 0006

7 DM 0988 to DM 0990 0007

8 DM 0991 to DM 0993 0008

9 DM 0994 to DM 0996 0009

10 DM 0997 to DM 0999 000A

Although each of them contains a different record, the structure of each record is
the same: the first word contains the error code; the second and third words, the
day and time. The error code will be either one generated by the system or by

DM Area Section 3-6

38

FAL(06)/FALS(07); the time and date will be the date and time from AR 18 and
AR 19 (Calender/date Area). Also recorded with the error code is an indication of
whether the error is fatal (08) or non-fatal (00). This structure is shown below.

Word Bit Content

First 00 to 07 Error code

08 to 15 00 (non-fatal) or 80 (fatal)

Second 00 to 07 Seconds

08 to 15 Minutes

Third 00 to 07 Hours

08 to 15 Day of month

Note A clock is built into the C200H-CPU31-E, ensuring accuracy in the error history
area times regardless of the Memory Unit that is mounted. The following
Memory Units must be mounted to use the clock and ensure accurate times in
the error history area with other CPUs: C200H-MR433/MR833/ME432/ME832.

Operation When the first error code is generated with AR 0715 (Error History Enable Bit)
turned ON, the relevant data will be placed in the error record after the one indi-
cated by the History Record Pointer (initially this will be record 1) and the Pointer
will be incremented. Any other error codes generated thereafter will be placed in
consecutive records until the last one is used. Processing of further error records
is based on the status of AR 0713 (Error History Overwrite Bit).

If AR 0713 is ON and the Pointer contains 000A, the next error will be written into
record 10, the contents of record 10 will be moved to record 9, and so on until the
contents of record 1 is moved off the end and lost, i.e., the area functions like a
shift register. The Record Pointer will remain set to 000A.

If AR 0713 is OFF and the Pointer reaches 000A, the contents of the Error Histo-
ry Error will remain as it is and any error codes generate thereafter will not be
recorded until AR 0713 is turned OFF or until the Error History Area is reset.

The Error History Area can be reset by turning ON and then OFF
AR 0714 (Error History Reset Bit). When this is done, the Record Pointer will be
reset to 0000, the Error History Area will be reset (i.e., cleared), and any further
error codes will be recorded from the beginning of the Error History Area.
AR 0715 (Error History Enable Bit) must be ON to reset the Error History Area.

Special I/O Unit Data The DM area between 1000 and 1999 is allocated to Special I/O Units as shown
below. When not used for this purpose, this area is available for other uses.

Unit Addresses

0 DM 1000 to DM 1099

1 DM 1100 to DM 1199

2 DM 1200 to DM 1299

3 DM 1300 to DM 1399

4 DM 1400 to DM 1499

5 DM 1500 to DM 1599

6 DM 1600 to DM 1699

7 DM 1700 to DM 1799

8 DM 1800 to DM 1899

9 DM 1900 to DM 1999

DM Area Section 3-6

39

3-7 HR (Holding Relay) Area
The HR area is used to store/manipulate various kinds of data and can be ac-
cessed either by word or by bit. Word addresses range from HR 00 through HR
99; bit addresses, from HR 0000 through HR 9915. HR bits can be used in any
order required and can be programmed as often as required.
The HR area retains status when the system operating mode is changed, when
power is interrupted, or when PC operation is stopped.
HR area bits and words can be used to to preserve data whenever PC operation
is stopped. HR bits also have various special applications, such as creating
latching relays with the Keep instructionand formingself-holding outputs. These
are discussed in Section 4 Writing and Inputting the Program and Section 5 In-
struction Set.
When a SYSMAC LINK System is used, a certain number of HR bits is required
for a routing table and monitor timer. These bits are taken from betweenHR 00 to
HR 42. Refer to the SYSMAC LINK System Manual for details.

3-8 TC (Timer/Counter) Area
The TC area is used to create and program timers and counters and holds the
Completion flags, set values (SV), and present values (PV) for all timers and
counters. All of these are accessed through TC numbers ranging from TC 000
through TC 511. Each TC number is defined as either a timer or counter using
one of the following instructions: TIM, TIMH, CNT, CNTR(12), TIMW<13>,
TMHW<15>, or CNTW<14>. No prefix is required when using a TC number in a
timer or counter instruction.
Once a TC number has been defined using one of these instructions, it cannot
be redefined elsewhere in the program either using the same or a different in-
struction. If the same TC number is defined in more than one of these instruc-
tions or in the same instruction twice, an error will be generated during the pro-
gram check. There are no restrictions on the order in which TC numbers can be
used.
Once defined, a TC number can be designated as an operand in one or more of
certainset of instructions other than those listed above. When definedas a timer,
a TC number designated as an operand takes a TIM prefix. The TIM prefix is
used regardless of the timer instruction that was used to define the timer. Once
defined as a counter, the TC number designated as an operand takes a CNT
prefix. The CNT is also used regardless of the counter instruction that was used
to define the counter.
TC numbers can be designated for operands that requirebit dataor for operands
that require word data. When designated as an operand that requires bit data,
the TC number accesses the completion flag of the timer or counter. When des-
ignated as anoperand that requires worddata, theTC number accesses amem-
ory location that holds the PV of the timer or counter.
TC numbers are also used to access the SV of timers and counters from a Pro-
gramming Device. The procedures for doing so using the ProgrammingConsole
are provided in 7-1 Monitoring Operation and Modifying Data.
The TC area retains the SVs of both timers and counters during power interrup-
tions. The PVs of timers are reset when PC operation is begun and when reset in
interlocked program sections. Refer to 5-9 INTERLOCK and INTERLOCK
CLEAR -- IL(02) and ILC(03) for details on timer and counter operation in inter-
locked program sections. The PVs of counters are not reset at these times.
Note that in programming “TIM 000” is used to designate three things: the Timer
instruction defined with TC number 000, the completion flag for this timer, and
the PV of this timer. The meaning in context should be clear, i.e., the first is al-

TC Area Section 3-8

40

ways an instruction, the second is always a bit, and the third is always a word.
The same is true of all other TC numbers prefixed with TIM or CNT.

3-9 LR (Link Relay) Area
The LR area is used as a common data area to transfer information between
PCs. This data transfer is achieved through a PC Link System, a SYSMAC LINK
System, or a SYSMAC NET Link System. The SYSMAC LINK or SYSMAC NET
Link Systems can use the LR area only when it is not being used by the PC Link
System.

Certain words will be allocated as the write words of each PC. These words are
written by the PC and automatically transferred to the same LR words in the
other PCs in the System. The write words of the other PCs are transferred in as
read words so that each PC can access the data written by the other PCs in the
PC Link System. Only the write words allocated to the particular PC will be avail-
able for writing; all other words may be read only. Refer to the PC Link System
Manual, SYSMAC LINK System Manual, or SYSMAC NET Link System Manual
for details.

The LR area is accessible either by bit or by word. LR area word addresses
range from LR 00 to LR 63; LR areabit addresses, from LR0000 toLR 6315. Any
part of the LR area that is not used by the PC Link System can be used as work
words or work bits.

LR area data is not retained when the power is interrupted, when the PC is
changed to PROGRAM mode, or when it is reset in an interlocked program sec-
tion. Refer to 5-9 INTERLOCK and INTERLOCK CLEAR -- IL(02) and ILC(03)
for details on interlocks.

3-10 Program Memory
Program Memory is where the user program is stored. The amount of Program
Memory available is either 4K or 8K words, depending on the type of Memory
Unit mounted to the CPU.

Memory Units come in different types, such as RAM and ROM Units, and for
each type there are different sizes. (Refer to the Installation Guide for details.)

To store instructions in Program Memory, input the instructions through the Pro-
gramming Console, or download programming data from a FIT, floppy disk, cas-
sette tape, or host computer, or from a File Memory Unit if one is mounted to the
CPU Rack. Refer to the end of Appendix A Standard Products for information on
FIT and other special products. Programming Console operations, including
those for program input, are described in Sections 4 and 7.

3-11 TR (Temporary Relay) Area
The TR area provides eight bits that are used only with the LD and OUT instruc-
tions to enable certain types of branching ladder diagram programming. Theuse
of TR bits is described in Section 4 Writing and Inputting the Program.

TR addresses range from TR 0 though TR 7. Each of these bits can be used as
many times as required and in any order required as long as the same LR bit is
not used twice in the same instruction block.

TR Area Section 3-11

41

SECTION 4
Writing and Inputting the Program

Thissectionexplainsthebasicstepsandconceptsinvolvedinwritingabasicladderdiagram program ,inputtingtheprogram
intom em ory,andexecutingit.Itintroducestheinstructionsthatareusedtobuildthebasicstructureoftheladderdiagram and
controlitsexecution.Theentiresetofinstructionsusedinprogram m ingisdescribedin Section 5 Instruction Set.

4-1 BasicProcedure 42...

4-2 InstructionTerm inology 42...

4-3 Program Capacity 43..

4-4 BasicLadderDiagram s 43...

4-4-1 BasicTerm s 44...

4-4-2 M nem onicCode 44..

4-4-3 LadderInstructions 45...

4-4-4 OUTPUT andOUTPUT NOT 47.......................................

4-4-5 TheEND Instruction 48..

4-4-6 LogicBlockInstructions 49...

4-4-7 CodingM ultipleRight-handInstructions 56..............................

4-5 TheProgram m ingConsole 56..

4-5-1 TheKeyboard 57..

4-5-2 PC M odes 58...

4-5-3 TheDisplayM essageSwitch 60..

4-6 PreparationforOperation 60..

4-6-1 EnteringthePassword 60...

4-6-2 Buzzer 61...

4-6-3 ClearingM em ory 61...

4-6-4 RegisteringtheI/O Table 63...

4-6-5 ClearingErrorM essages 64...

4-6-6 VerifyingtheI/O Table 64..

4-6-7 ReadingtheI/O Table 66...

4-6-8 ClearingtheI/O Table 68...

4-6-9 SYSM AC NET LinkTableTransfer(CPU31-E Only) 69....................

4-7 Inputting,M odifying,andCheckingtheProgram 71...............................

4-7-1 SettingandReadingfrom Program M em oryAddress 71....................

4-7-2 EnteringandEditingProgram s 72......................................

4-7-3 CheckingtheProgram 75...

4-7-4 DisplayingtheCycleTim e 77...

4-7-5 Program Searches 78...

4-7-6 InsertingandDeletingInstructions 79...................................

4-7-7 BranchingInstructionLines 82...

4-7-8 Jum ps 86..

4-8 ControllingBitStatus 87...

4-8-1 DIFFERENTIATE UP andDIFFERENTIATE DOW N 87...................

4-8-2 KEEP 88..

4-8-3 Self-m aintainingBits(Seal) 88..

4-9 W orkBits(InternalRelays) 88..

4-10 Program m ingPrecautions 91...

4-11 Program Execution 92...

42

4-1 Basic Procedure
There are several basic steps involved in writing a program. Sheets that can be
copied to aid in programming are provided in Appendix F Word Assignment Re-
cording Sheets and Appendix G Program Coding Sheet.

1,2,3... 1. Obtain a list of all I/O devices and the I/O points that have been assigned to
them and prepare a table that shows the I/O bit allocated to each I/O device.

2. If the PC has any Units that are allocated words in data areas other than the
IR area or are allocated IR words in which the function of each bit is specified
by the Unit, prepare similar tables to show what words are used for which
Units and what function is served by each bit within the words. These Units
include Special I/O Units and Link Units.

3. Determine what words are available for work bits and prepare a table in
which you can allocate these as you use them.

4. Also prepare tables of TC numbers and jump numbers so that you can allo-
cate these as you use them. Remember, the function of a TC number can be
defined only once within the program; jump numbers 01 through 99 can be
used only once each. (TC number are described in 5-13 Timer and Counter
Instructions; jump numbers are described later in this section.)

5. Draw the ladder diagram.
6. Input the program into the CPU. Whenusing theProgramming Console, this

will involve converting the program to mnemonic form.
7. Check the program for syntax errors and correct these.
8. Execute the program to check for execution errors and correct these.
9. After the entire Control System has been installed and is ready for use, exe-

cute the program and fine tune it if required.
10. Make a backup copy of the program.
The basics of ladder-diagram programming and conversion to mnemonic code
are described in 4-4 Basic Ladder Diagrams. Preparing for and inputting the pro-
gram via the Programming Console are described in 4-5 The Programming
Console through 4-7 Inputting, Modifying, and Checking the Program. The rest
of Section 4 covers more advanced programming, programming precautions,
and program execution. All special application instructions are covered in Sec-
tion 5 Instruction Set. Debugging is described in Section 7 Program Monitoring
and Execution. Section 8 Troubleshooting also provides information required for
debugging.

4-2 Instruction Terminology
There are basically two types of instructions used in ladder-diagram program-
ming: instructions that correspond to the conditions on the ladder diagram and
are used in instruction form only when converting a program to mnemonic code
and instructions that are used on the right side of the ladder diagram and are
executed according to the conditions on the instruction lines leading to them.
Most instructions have at least one or more operands associated with them. Op-
erands indicate or provide the data on which an instruction is to be performed.
These are sometimes input as the actual numeric values, but are usually the ad-
dresses of data area words or bits that contain the data to be used. For instance,
a MOVE instruction that has IR 000 designated as the source operand will move
the contents of IR 000 to some other location. The other location is also desig-
nated as an operand. A bit whose address is designated as an operand is called
an operand bit; a word whose address is designated as an operand is called an
operand word. If the actual value is entered as a constant, it is preceded by # to
indicate that it is not an address.

Instruction Terminology Section 4-2

43

Other terms used in describing instructions are introduced in Section 5 Instruc-
tion Set.

4-3 Program Capacity
The memory capacity and maximum user program size vary with the Memory
Unit that is mounted as shown below. Refer to the Installation Guide for further
information on Memory Units.

Memory Model Capacity Maximum
program size

EPROM C200H-MP831 8K words 6,974 words

EEPROM C200H-ME431 4K words 2,878 words

C200H-ME831 8K words 6,974 words

C200H-ME432 4K words 2,878 words

C200H-ME832 8K words 6,974 words

RAM C200H-MR431 4K words 2,878 words

C200H-MR831 8K words 6,974 words

C200H-MR432 4K words 2,878 words

C200H-MR832 8K words 6,974 words

C200H-MR433 4K words 2,878 words

C200H-MR833 8K words 6,974 words

4-4 Basic Ladder Diagrams
A ladder diagram consists of one line running down the left side with lines
branching off to the right. The line on the left is called the bus bar; the branching
lines, instruction lines or rungs. Along the instruction lines are placed conditions
that lead to other instructions on the right side. The logical combinations of these
conditions determine when and how the instructions at the right are executed. A
ladder diagram is shown below.

00000 06315

Instruction

Instruction

00403

00001

HR 0109 LR 250325208 24400

00501 00502 00503 00504

24401

00100 00002

00010

00011

00003 HR 0050 00007 TIM 001 LR 0515

21001 21002

00405

21005 21007

As shown in the diagram above, instruction lines can branch apart and they can
join back together. The vertical pairs of lines are called conditions. Conditions
without diagonal lines through them are called normally open conditions and
correspond to a LOAD, AND, or OR instruction. The conditions with diagonal
lines through them are called normally closed conditions and correspond to a
LOAD NOT, AND NOT, or OR NOT instruction. The number above each condi-
tion indicates the operand bit for the instruction. It is the status of the bit asso-
ciated with each condition that determines the execution condition for following
instructions. The way the operation of each of the instructions corresponds to a
condition is described below. Before we consider these, however, there are
some basic terms that must be explained.

Note When displaying ladder diagrams with a GPC, a FIT, or LSS, a second bus bar
will be shown on the right side of the ladder diagram and will be connected to all

BasicLadderDiagrams Section 4-4

44

instructions on the right side. This does not change the ladder-diagram program
in any functional sense. No conditions can be placed between the instructions
on the right side and the right bus bar, i.e., all instructions on the right must be
connected directly to the right bus bar. Refer to the GPC, FIT, or LSS Operation
Manual for details.

4-4-1 Basic Terms
Each condition in a ladder diagram is either ON or OFF depending on the status
of the operand bit that has been assigned to it. A normally open condition is ON if
the operand bit is ON; OFF if the operand bit is OFF. A normally closed condition
is ON if the operand bit is OFF; OFF if the operandbit is ON. Generally speaking,
you use a normally open condition when you want something to happen when a
bit is ON, and a normally closed condition when you want something to happen
when a bit is OFF.

Instruction

Instruction

00000

00000 Instruction is executed
when IR bit 00000 is ON.

Instruction is executed
when IR bit 00000 is OFF.

Normally open
condition

Normally closed
condition

In ladder diagram programming, the logical combination of ON and OFF condi-
tions before an instruction determines the compound condition under which the
instruction is executed. This condition, which is either ON or OFF, is called the
execution condition for the instruction. All instructions other than LOAD instruc-
tions have execution conditions.

The operands designated for any of the ladder instructions can be any bit in the
IR, SR, HR, AR, LR, or TC areas. This means that the conditions in a ladder dia-
gram can be determined by I/O bits, flags, work bits, timers/counters, etc. LOAD
and OUTPUT instructions can also use TR area bits, but they do so only in spe-
cial applications. Refer to 4-7-7 Branching Instruction Lines for details.

The way that conditions correspond to what instructions is determined by the
relationship between the conditions within the instruction lines that connect
them. Any group of conditions that go together to create a logic result is called a
logic block. Although ladder diagrams can be written without actually analyzing
individual logic blocks, understanding logic blocks is necessary for efficient pro-
gramming and is essential when programs are to be input in mnemonic code.

4-4-2 Mnemonic Code
The ladder diagram cannot be directly input into the PC via a Programming Con-
sole; aGPC, aFIT, or LSS is required. To input from a ProgrammingConsole, it is
necessary to convert the ladder diagram to mnemonic code. The mnemonic
code provides exactly the same information as the ladder diagram, but in a form
that can be typed directly into the PC. Actually you can program directly in mne-
monic code, although it in not recommended for beginners or for complex pro-
grams. Also, regardless of the Programming Device used, the program is stored
in memory in mnemonic form, making it important to understand mnemonic
code.
Because of the importance of the Programming Console as a peripheral device
and because of the importance of mnemonic code in complete understanding of
a program, we will introduce and describe the mnemonic code along with the
ladder diagram. Remember, you will not need to use the mnemonic code if you
are inputting via a GPC, a FIT, or LSS (althoughyou canuse it with thesedevices
too, if you prefer).

Normally Open and
Normally Closed
Conditions

Execution Conditions

Operand Bits

Logic Blocks

BasicLadderDiagrams Section 4-4

45

The program is input into addresses in Program Memory. Addresses in Program
Memory are slightly different to those in other memory areas because each ad-
dress does not necessarily hold the same amount of data. Rather, each address
holds one instruction and all of the definers and operands (described in more
detail later) required for that instruction. Because some instructions require no
operands, while others require up to three operands, Program Memory address-
es can be from one to four words long.

Program Memory addresses start at 00000and rununtil thecapacity of Program
Memory has been exhausted. The first word at each address defines the instruc-
tion. Any definers used by the instruction are also contained in the first word.
Also, if an instruction requires only a single bit operand (with no definer), the bit
operand is also programmed on the same line as the instruction. The rest of the
words required by an instruction contain the operands that specify what data is
to be used. When converting to mnemonic code, all but ladder diagram instruc-
tions are written in the same form, one word to a line, just as they appear in the
ladder diagram symbols. An example of mnemonic code is shown below. The
instructions used in it are described later in the manual.

Address Instruction Operands

00000 LD HR 0001
00001 AND 00001
00002 OR 00002
00003 LD NOT 00100
00004 AND 00101
00005 AND LD 00102
00006 MOV(21)

000
DM 0000

00007 CMP(20)
DM 0000
HR 00

00008 LD 25505
00009 OUT 00501
00010 MOV(21)

DM 0000
DM 0500

00011 DIFU(13) 00502
00012 AND 00005
00013 OUT 00503

The address and instruction columns of the mnemonic code table are filled in for
the instruction word only. For all other lines, the left two columns are left blank. If
the instruction requires no definer or bit operand, the operand column is left
blank for first line. It is a good idea to cross through any blank data column
spaces (for all instruction words that do not require data) so that the data column
can be quickly scanned to see if any addresses have been left out.

When programming, addresses are automatically displayed and do not have to
be input unless for some reason a different location is desired for the instruction.
When converting to mnemonic code, it is best to start at Program Memory ad-
dress 00000 unless there is a specific reason for starting elsewhere.

4-4-3 Ladder Instructions
The ladder instructions are those instructions that correspond to the conditions
on the ladder diagram. Ladder instructions, either independently or in combina-
tion with the logic block instructions described next, form the execution condi-
tions upon which the execution of all other instructions are based.

Program Memory Structure

BasicLadderDiagrams Section 4-4

46

The first condition that starts any logic block within a ladder diagram corre-
sponds to a LOAD or LOAD NOT instruction. Each of these instruction requires
one line of mnemonic code. “Instruction” is used as a dummy instruction in the
following examples and could be any of the right-hand instructions described lat-
er in this manual.

00000

00000

A LOAD instruction.

A LOAD NOT instruction.

Address Instruction Operands

00000 LD 00000
00001 Instruction
00002 LD NOT 00000
00003 Instruction

When this is the only condition on the instruction line, the execution condition for
the instruction at the right is ON when the condition is ON. For the LOAD instruc-
tion (i.e., a normally open condition), the execution condition will be ON when IR
00000 is ON; for the LOAD NOT instruction (i.e., a normally closed condition), it
will be ON when 00000 is OFF.

When two or more conditions lie in series on the same instruction line, the first
one corresponds to a LOAD or LOAD NOT instruction; and the rest of the condi-
tions correspond to AND or AND NOT instructions. The following example
shows three conditions which correspond in order from the left to a LOAD, an
AND NOT, and an AND instruction. Again, each of these instructions requires
one line of mnemonic code.

00000 00100 LR 0000
Instruction

Address Instruction Operands

00000 LD 00000
00001 AND NOT 00100
00002 AND LR 0000
00003 Instruction

The instruction will have an ON execution condition only when all three condi-
tions are ON, i.e., when IR 00000 is ON, IR 00100 is OFF, and LR 0000 is ON.

AND instructions in series can be considered individually, with each taking the
logical AND of the execution condition (i.e., the total of all conditions up to that
point) and thestatus of the ANDinstruction’s operandbit. If both of these areON,
an ON execution condition will be produced for the next instruction. If either is
OFF, the result will also be OFF. The execution condition for the first AND in-
struction in a series is the first condition on the instruction line.

Each AND NOT instruction in series takes the logical AND of its executioncondi-
tion and the inverse of its operand bit.

When two or more conditions lie on separate instruction lines which run in paral-
lel and then join together, the first condition corresponds to a LOAD or LOAD
NOT instruction; the other conditions correspond to OR or OR NOT instructions.
The following example shows three conditions which correspond (in order from

LOAD and LOAD NOT

AND and AND NOT

OR and OR NOT

BasicLadderDiagrams Section 4-4

47

the top) to a LOAD NOT, an OR NOT, and an OR instruction. Again, each of
these instructions requires one line of mnemonic code.

Instruction

00100

LR 0000

00000

Address Instruction Operands

00000 LD 00000
00001 OR NOT 00100
00002 OR LR 0000
00003 Instruction

The instruction will have an ON execution condition when any one of the three
conditions is ON, i.e., when IR 00000 is OFF, when IR 00100 is OFF, or when LR
0000 is ON.
OR and OR NOT instructions can be considered individually, each taking the
logical OR between its execution condition and the status of the OR instruction’s
operand bit. If either one of these were ON, an ON execution condition will be
produced for the next instruction.

When AND and OR instructions are combined in more complicated diagrams,
they can sometimes be considered individually, with each instruction performing
a logic operation on the execution condition and the status of the operand bit.
The following is one example. Study this example until you are convinced that
the mnemonic code follows the same logic flow as the ladder diagram.

Instruction
00002 0000300000 00001

00200

Address Instruction Operands

00000 LD 00000
00001 AND 00001
00002 OR 00200
00003 AND 00002
00004 AND NOT 00003
00005 Instruction

Here, an AND is taken between the status of IR 00000 and that of IR 00001 to
determine the execution condition for an OR with the status of IR 00200. The
result of this operation determines the execution condition for an AND with the
status of IR 00002, which in turn determines the execution condition for an AND
with the inverse (i.e., and AND NOT) of the status of IR 00003.
In more complicated diagrams, however, it is necessary to consider logic blocks
before an execution condition can be determined for the final instruction, and
that’s where AND LOAD and OR LOAD instructions are used. Before weconsid-
er more complicated diagrams, however, we’ll look at the instructions required to
complete a simple “input-output” program.

4-4-4 OUTPUT and OUTPUT NOT
The simplest way to output the results of combining execution conditions is to
output it directly with the OUTPUT and OUTPUT NOT. These instructions are

Combining AND and OR
Instructions

BasicLadderDiagrams Section 4-4

48

used to control the status of the designated operand bit according to the execu-
tion condition. With the OUTPUT instruction, the operand bit will be turned ON
as long as the execution condition is ON and will be turned OFF as long as the
execution condition is OFF. With the OUTPUT NOT instruction, the operand bit
will be turned ON as long as the execution condition is OFF and turned OFF as
long as the execution condition is ON. These appear as shown below. In mne-
monic code, each of these instructions requires one line.

00000

00201

00200

00001

Address Instruction Operands

00000 LD 00000
00001 OUT 00200

Address Instruction Operands

00000 LD 00001
00001 OUT NOT 00201

In the above examples, IR 00200 will be ON as long as IR 00000 is ON and IR
00201 will be OFF as long as IR 00001 is ON. Here, IR 00000 and IR 00001 will
be input bits and IR 00200 and IR 00201 output bits assigned to the Units con-
trolled by the PC, i.e., the signals coming in through the input points assigned IR
00000 and IR 00001 are controlling the output points assigned IR 00200 and IR
00201, respectively.

The length of time that a bit is ON or OFF can be controlled by combining the
OUTPUT or OUTPUT NOT instruction with TIMER instructions. Refer to Exam-
ples under 5-13-1 TIMER -- TIM for details.

4-4-5 The END Instruction
The last instruction required to complete a simple program is the END instruc-
tion. When the CPU cycles the program, it executes all instruction up to the first
END instruction before returning to the beginning of the program and beginning
execution again. Although an END instruction can be placed at any point in a
program, which is sometimes done when debugging, no instructions past the
first END instruction will be executed until it is removed. The number following
the END instruction in the mnemonic code is its function code, which is used
when inputted most instruction into the PC. These are described later. The END
instruction requires no operands and no conditions can be placed on the same
instruction line with it.

Instruction
00000 00001

END(01)
Program execution
ends here.

Address Instruction Operands

00000 LD 00000
00001 AND NOT 00001
00002 Instruction
00003 END(01) ---

If there is no END instruction anywhere in the program, the program will not be
executed at all.

Now you have all of the instructions required to write simple input-output pro-
grams. Before we finish with ladder diagram basic and go onto inputting the pro-
gram into the PC, let’s look at logic block instruction (AND LOADand ORLOAD),
which are sometimes necessary even with simple diagrams.

BasicLadderDiagrams Section 4-4

49

4-4-6 Logic Block Instructions
Logic block instructions do not correspond to specific conditions on the ladder
diagram; rather, they describe relationships between logic blocks. The AND
LOAD instruction logically ANDs the execution conditions produced by two logic
blocks. The OR LOAD instruction logically ORs the execution conditions pro-
duced by two logic blocks.

Although simple in appearance, the diagram below requires an AND LOAD in-
struction.

Instruction
00002

00003

00000

00001

Address Instruction Operands

00000 LD 00000
00001 OR 00001
00002 LD 00002
00003 OR NOT 00003
00004 AND LD ---

The two logic blocks are indicated by dotted lines. Studying this example shows
that an ON execution condition will be produced when: either of the conditions in
the left logic block is ON (i.e., when either IR 00000 or IR 00001 is ON), and
when either of the conditions in the right logic block is ON (i.e., when either IR
00002 is ON or IR 00003 is OFF).
The above ladder diagram cannot, however, be converted to mnemonic code
using AND and OR instructions alone. If an AND between IR 00002 and the re-
sults of an OR between IR 00000 and IR 00001 is attempted, the OR NOT be-
tween IR 00002 and IR 00003 is lost and the OR NOT ends up being an OR NOT
between just IR 00003 and the result of an AND between IR 00002 and the first
OR. What we need is a way to do the OR (NOT)’s independently and then com-
bine the results.
To do this, we can use the LOAD or LOAD NOT instruction in the middle of an
instruction line. When LOAD or LOAD NOT is executed in this way, the current
execution condition is saved in a special buffer and the logic process is re-
started. To combine the results of the current execution condition with that of a
previous “unused” execution condition, an AND LOAD or an OR LOAD instruc-
tion is used. Here “LOAD” refers to loading the last unused execution condition.
An unused execution condition is produced by using the LOAD or LOAD NOT
instruction for any but the first condition on an instruction line.
Analyzing the above ladder diagram in terms of mnemonic instructions, the con-
dition for IR 00000 is a LOAD instruction and the condition below it is an OR in-
struction between the status of IR 00000 and that of IR 00001. The condition at
IR 00002 is another LOAD instruction and the condition below is an OR NOT
instruction, i.e., an OR between the status of IR 00002 and the inverse of the
status of IR 00003. To arrive at the execution condition for the instruction at the
right, the logical AND of the execution conditions resulting from these two blocks
will have to be taken. AND LOAD does this. The mnemonic code for the ladder
diagram is shown below. The AND LOAD instruction requires no operands of its
own, because it operates on previously determined execution conditions. Here
too, dashes are used to indicate that no operands needs designated or input.

The following diagram requires an OR LOAD instruction between the top logic
block and the bottom logic block. An ON execution condition will be produced for

AND LOAD

OR LOAD

BasicLadderDiagrams Section 4-4

50

the instruction at the right either when IR 00000 is ON and IR 00001 is OFF, or
when IR 00002 and IR 00003 are both ON. The operation of the OR LOAD in-
struction and its mnemonic code is exactly the same as that for an AND LOAD
instruction, except that the current execution condition is ORed with the last un-
used execution condition.

Instruction
00000 00001

00002 00003

Address Instruction Operands

00000 LD 00000
00001 AND NOT 00001
00002 LD 00002
00003 AND 00003
00004 OR LD ---

Naturally, some diagrams will require both AND LOAD and OR LOAD instruc-
tions.

To code diagrams with logic block instructions in series, the diagram must be
divided into logic blocks. Each block is coded using a LOAD instruction to code
the first condition, and then AND LOAD or OR LOAD is used to logically combine
the blocks. With both AND LOAD and OR LOAD there are two ways to achieve
this. One is to code the logic block instruction after the first two blocks and then
after each additional block. The other is to code all of the blocks to be combined,
starting each block with LOAD or LOAD NOT, and then to code the logic block
instructions which combine them. In this case, the instructions for the last pair of
blocks should be combined first, and then each preceding block should be com-
bined, working progressively back to the first block. Although either of these
methods will produce exactly the same result, the second method, that of coding
all logic block instructions together, can be used only if eight or fewer blocks are
being combined, i.e., if seven or fewer logic block instructions are required.

The following diagram requires AND LOAD to be converted to mnemonic code
because three pairs of parallel conditions lie in series. The two options for coding
the programs are also shown.

00000 00002 00004

00001 00003 00005

00500

Address Instruction Operands Address Instruction Operands

00000 LD 00000
00001 OR NOT 00001
00002 LD NOT 00002
00003 OR 00003
00004 AND LD —
00005 LD 00004
00006 OR 00005
00007 AND LD —
00008 OUT 00500

00000 LD 00000
00001 OR NOT 00001
00002 LD NOT 00002
00003 OR 00003
00004 LD 00004
00005 OR 00005
00006 AND LD —
00007 AND LD —
00008 OUT 00500

Logic Block Instructions in
Series

BasicLadderDiagrams Section 4-4

51

Again, with the method on the right, a maximum of eight blocks can be com-
bined. There is no limit to the number of blocks that can be combined with the
first method.
The following diagram requires OR LOAD instructions to be converted to mne-
monic code because three pairs of series conditions lie in parallel to each other.

00000 00001

00002 00003

00040 00005

00501

The first of each pair of conditions is converted to LOAD with the assigned bit
operand and then ANDed with the other condition. The first two blocks can be
coded first, followed by OR LOAD, the last block, and another OR LOAD; or the
three blocks can be coded first followed by two OR LOADs. The mnemonic
codes for both methods are shown below.

00000 LD 00000
00001 AND NOT 00001
00002 LD NOT 00002
00003 AND NOT 00003
00004 OR LD —
00005 LD 00004
00006 AND 00005
00007 OR LD —
00008 OUT 00501

00000 LD 00000
00001 AND NOT 00001
00002 LD NOT 00002
00003 AND NOT 00003
00004 LD 00004
00005 AND 00005
00006 OR LD —
00007 OR LD —
00008 OUT 00501

Address Instruction Operands Address Instruction Operands

Again, with the method on the right, a maximum of eight blocks can be com-
bined. There is no limit to the number of blocks that can be combined with the
first method.

Both of the coding methods described above can also be used when using AND
LOAD and OR LOAD, as long as the number of blocks being combined does not
exceed eight.

Combining AND LOAD and
OR LOAD

BasicLadderDiagrams Section 4-4

52

The following diagram contains only two logic blocks as shown. It is not neces-
sary to further separate block b components, because it can be coded directly
using only AND and OR.

00000 00001 00002 00003

00201

00501

00004

Block
a

Block
b

Address Instruction Operands

00000 LD 00000
00001 AND NOT 00001
00002 LD 00002
00003 AND 00003
00004 OR 00201
00005 OR 00004
00006 AND LD —
00007 OUT 00501

Although the following diagram is similar to the one above, block b in thediagram
below cannot be coded without separating it into two blocks combined with OR
LOAD. In this example, the three blocks have been coded first and then OR
LOAD has been used to combine the last two blocks, followed by AND LOAD to
combine the execution condition produced by the OR LOAD with the execution
condition of block a.
When coding the logic block instructions together at the end of the logic blocks
they are combining, they must, as shown below, be coded in reverse order, i.e.,
the logic block instruction for the last two blocks is coded first, followed by the
one to combine the execution condition resulting from the first logic block in-
struction and the execution condition of the logic block third from the end, and on
back to the first logic block that is being combined.

00000 00001 00002 00003
00502

00004 00202

Block
a

Block
b

Block
b2

Block
b1 Address Instruction Operands

00000 LD NOT 00000
00001 AND 00001
00002 LD 00002
00003 AND NOT 00003
00004 LD NOT 00004
00005 AND 00202
00006 OR LD —
00007 AND LD —
00008 OUT 00502

When determining what logic block instructions will be required to code a dia-
gram, it is sometimes necessary to break the diagram into large blocks and then
continue breaking the large blocks down until logic blocks that can be coded
without logic block instructions have been formed. These blocks are thencoded,
combining the small blocks first, and then combining the larger blocks. Either
AND LOAD or OR LOAD is used to combine the blocks, i.e., AND LOAD or OR
LOAD always combines the last two execution conditions that existed, regard-
less of whether the execution conditions resulted from a single condition, from
logic blocks, or from previous logic block instructions.

Complicated Diagrams

BasicLadderDiagrams Section 4-4

53

When working with complicated diagrams, blocks will ultimately be coded start-
ing at the top left and moving down before moving across. This will generally
mean that, when there might be a choice, OR LOAD will be coded before AND
LOAD.
The following diagram must be broken down into two blocks and each of these
then broken into two blocks before it can be coded. As shown below, blocks a
and b require an AND LOAD. Before AND LOAD can be used, however, OR
LOAD must be used to combine the top and bottom blocks on both sides, i.e., to
combine a1 and a2; b1 and b2.

00000 00001 00004 00005
00503

Block
a

Block
b

00006 00007

Block
b2

Block
b1

00002 00003

Block
a2

Block
a1

Blocks a1 and a2

Blocks b1 and b2

Blocks a and b

Address Instruction Operands

00000 LD 00000
00001 AND NOT 00001
00002 LD NOT 00002
00003 AND 00003
00004 OR LD —
00005 LD 00004
00006 AND 00005
00007 LD 00006
00008 AND 00007
00009 OR LD —
00010 AND LD —
00011 OUT 00503

The following type of diagram can be coded easily if each block is coded inorder:
first top to bottom and then left to right. In the following diagram, blocks a and b
would be combined using AND LOAD as shown above, and then block c would
be coded and a second AND LOAD would beused tocombined it with theexecu-
tion condition from the first AND LOAD. Then block d would be coded, a third
AND LOAD would be used to combine the execution condition from block d with
the execution condition from the second AND LOAD, and so on through to block
n.

Block
a

Block
b

00500

Block
n

Block
c

BasicLadderDiagrams Section 4-4

54

The following diagram requires an OR LOAD followed by an AND LOAD to code
the top of the three blocks, and then two more OR LOADs to complete the mne-
monic code.

00002 00003

LR 0000
00000 00001

00004 00005

00006 00007

Address Instruction Operands

00000 LD 00000
00001 LD 00001
00002 LD 00002
00003 AND NOT 00003
00004 OR LD --
00005 AND LD --
00006 LD NOT 00004
00007 AND 00005
00008 OR LD --
00009 LD NOT 00006
00010 AND 00007
00011 OR LD --
00012 OUT LR 0000

Although the program will execute as written, this diagram could be drawn as
shown below to eliminate the need for the first OR LOAD and the AND LOAD,
simplifying the program and saving memory space.

00002 00003
LR 0000

00001

00000

00004 00005

00006 00007

Address Instruction Operands

00000 LD 00002
00001 AND NOT 00003
00002 OR 00001
00003 AND 00000
00004 LD NOT 00004
00005 AND 00005
00006 OR LD --
00007 LD NOT 00006
00008 AND 00007
00009 OR LD --
00010 OUT LR 0000

The following diagram requires five blocks, which here are coded in order before
using OR LOAD and AND LOAD to combine them starting from the last two
blocks and working backward. The OR LOAD at program address 00008 com-

BasicLadderDiagrams Section 4-4

55

bines blocks blocks d and e, the following AND LOAD combines the resulting
execution condition with that of block c, etc.

LR 0000
00000

00003 00004

00006 00007

00001 00002

00005

Block e

Block dBlock c

Block b

Block a

Address Instruction Operands

Blocks d and e

Block c with result of above

Block b with result of above

Block a with result of above

00000 LD 00000
00001 LD 00001
00002 AND 00002
00003 LD 00003
00004 AND 00004
00005 LD 00005
00006 LD 00006
00007 AND 00007
00008 OR LD --
00009 AND LD --
00010 OR LD --
00011 AND LD --
00012 OUT LR 0000

Again, this diagram can be redrawn as follows to simplify program structure and
coding and to save memory space.

00006 00007
LR 0000

00005

00001 00002

00003 00004 00000
Address Instruction Operands

00000 LD 00006
00001 AND 00007
00002 OR 00005
00003 AND 00003
00004 AND 00004
00005 LD 00001
00006 AND 00002
00007 OR LD --
00008 AND 00000
00009 OUT LR 0000

The next and final example may at first appear very complicated but can be
coded using only two logic block instructions. The diagram appears as follows:

00000 00001
00500

00002 00003

01000 01001

00004 00005

00500

00006

Block cBlock b

Block a

The first logic block instruction is used to combine the execution conditions re-
sulting from blocks a and b, and the second one is to combine the execution con-
dition of block c with the execution condition resulting from the normally closed
condition assigned IR 00003. The rest of the diagram can be coded with OR,

BasicLadderDiagrams Section 4-4

56

AND, and AND NOT instructions. The logical flow for this and the resulting code
are shown below.

00000 00001

00500

00002 00003

01000 01001

00004 0000500500

00006

Block c

Block bBlock a

OR LD

LD 00000
AND 00001

OR 00500

AND 00002
AND NOT 00003

LD 01000
AND 01001

LD 00006

LD 00004
AND 00005

AND LD

Address Instruction Operands

00000 LD 00000
00001 AND 00001
00002 LD 01000
00003 AND 01001
00004 OR LD --
00005 OR 00500
00006 AND 00002
00007 AND NOT 00003
00008 LD 00004
00009 AND 00005
00010 OR 00006
00011 AND LD --
00012 OUT 00500

4-4-7 Coding Multiple Right-hand Instructions
If there is more than one right-hand instruction executed with the same execu-
tion condition, they are coded consecutively following the last condition on the
instruction line. In the following example, the last instruction line contains one
more condition that corresponds to an AND with IR 00004.

00000 00003

00001

0000400002

HR 0000

HR
0001

00500

00506

Address Instruction Operands

00000 LD 00000
00001 OR 00001
00002 OR 00002
00003 OR HR 0000
00004 AND 00003
00005 OUT HR 0001
00006 OUT 00500
00007 AND 00004
00008 OUT 00506

4-5 The Programming Console
Once a program has been written, it must be input into the PC. This can be done
in graphic (ladder diagram) form using a GPC,a FIT, or LSS. The most common
way of inputting a program, however, is through a Programming Console using
mnemonic code. This and the next section describe the Programming Console
and the operation necessary to prepare for program input. 4-7 Inputting, Modify-
ing, and Checking the Program describes actual procedures for inputting the
program into memory.
Depending on the model of Programming Console used, it is either connected to
the CPU via a Programming Console Adapter and Connecting Cable or it is
mounted directly to the CPU.

TheProgrammingConsole Section 4-5

57

4-5-1 The Keyboard
The keyboard of the Programming Console is functionally divided by key color
into the following four areas:

The ten white keys are used to input numeric program data such as program
addresses, data area addresses, and operand values. The numeric keys are
also used in combination with the function key (FUN) to enter instructions with
function codes.

The CLR key clears the display and cancels current Programming Console op-
erations. It is also used when you key in the password at the beginning of pro-
gramming operations. Any Programming Console operation can be cancelled
by pressing the CLR key, although the CLR key may have to be pressed two or
three times to cancel the operation and clear the display.

The yellow keys are used for writing and correcting programs. Detailed explana-
tions of their functions are given later in this section.

Except for the SHIFT key on the upper right, the gray keys are used to input in-
structions and designate data area prefixes when inputting or changing a pro-
gram. The SHIFT key is similar to the shift key of a typewriter, and is used to alter
the function of the next key pressed. (It is not necessary to hold the SHIFT key
down; just press it once and then press the key to be used with it.)

White: Numeric Keys

Red: CLR Key

Yellow: Operation Keys

Gray: Instruction and Data
Area Keys

TheProgrammingConsole Section 4-5

58

The gray keys other than the SHIFT key have either the mnemonic name of the
instruction or the abbreviation of the data area written on them. The functions of
these keys are described below.

Pressed before the function code when inputting an instruction
via its function code.

Pressed to enter SFT (the Shift Register instruction).

Input either after a function code to designate the differentiated
form of an instruction or after a ladder instruction to designate
an inverse condition.

Pressed to enter AND (the AND instruction) or used with NOT
to enter AND NOT.

Pressed to enter OR (the OR instruction) or used with NOT to
enter OR NOT.

Pressed to enter CNT (the Counter instruction) or to designate
a TC number that has already been defined as a counter.

Pressed to enter LD (the Load instruction) or used with NOT to
enter LD NOT. Also pressed to indicate an input bit.

Pressed to enter OUT (the Output instruction) or used with
NOT to enter OUT NOT. Also pressed to indicate an output bit.

Pressed to enter TIM (the Timer instruction) or to designate a
TC number that has already been defined as a timer.

Pressed before designating an address in the TR area.

Pressed before designating an address in the LR area.

Pressed before designating an address in the HR area.

Pressed before designating an address in the AR area.

Pressed before designating an address in the DM area.

Pressed before designating an indirect DM address.

Pressed before designating a word address.

Pressed before designating an operand as a constant.

Pressed before designating a bit address.

Pressed before function codes for block programming instruc-
tions, i.e., those placed between pointed parentheses <>.

4-5-2 PC Modes
The Programming Console is equipped with a switch to control the PC mode. To
select one of the three operating modes—RUN, MONITOR, or PROGRAM—
use the mode switch. The mode that you select will determine PC operation as
well as the procedures that are possible from the Programming Console.

TheProgrammingConsole Section 4-5

!

59

RUN mode is the mode used for normal program execution. When the switch is
set to RUN and the START input on the CPU Power Supply Unit is ON, the CPU
will begin executing the program according to the program written in its Program
Memory. Although monitoring PC operation from the Programming Console is
possible in RUN mode, no data in any of the memory areas can be input or
changed.
MONITOR mode allows you to visually monitor in-progress program execution
while controlling I/O status, changing PV (present values) or SV (set values),
etc. In MONITOR mode, I/O processing is handled in the same way as in RUN
mode. MONITORmode is generally used for trial system operationand finalpro-
gram adjustments.
In PROGRAM mode, the PC does not execute the program. PROGRAM mode
is for creating and changing programs, clearing memory areas, and registering
and changing the I/O table. A special Debug operation is also available within
PROGRAM mode that enables checking a program for correct execution before
trial operation of the system.
TERMINAL modeallows thedisplay of a 32-character message, as well as oper-
ation of the keyboard mapping function. To enter TERMINAL mode, press the
CHG key or execute the TERMINAL Mode Change instruction (TERM(48)).

WARNING Do not leave the Programming Console connected to the PC by an extension
cable when in RUN mode. Noise picked up by the extension cable can enter the
PC, affecting the program and thus the controlled system.

The factors that determine the PC’s initial operating mode (the mode when the
PC is turned on) are listed below in order of importance.

1,2,3... 1. Programming Console Mounted:
If the Programming Console is mounted to the PC when PC power is ap-
plied, the PC will enter the mode set on the Programming Console’s mode
switch.

2. Memory Unit’s Initial Mode Switch ON:
If a Programming Console is not mounted to the PC and the Initial Mode
Switch on the Memory Unit is ON, the PC will enter RUN mode.

3. Bit 01 of P ON:
If a Programming Console is not mounted to the PC, the Initial Mode Switch
on the Memory Unit is OFF, and bit 01 of operand P was ON when SYS(49)
was executed, the PC will enter RUN mode when turned ON.

4. Bit 01 of P OFF:
If a Programming Console is not mounted to the PC, the Initial Mode Switch
on the Memory Unit is OFF, bit 01 of operand P was OFF when SYS(49) was
executed, and no other peripheral devices* are connected to the PC, the PC
will enter RUN mode when turned ON. It will enter PROGRAM mode if a pe-
ripheral device* is connected.

Note *“Other peripheral device” refers to a Peripheral Interface Unit, PROM Writer,
Printer Interface Unit, or Floppy Disk Interface Unit.

If the PC power supply is already turnedon whena PeripheralDevice is attached
to the PC, the PC will stay in the same mode it was in before the peripheral de-
vice was attached. The mode can be changed with the mode switch on the Pro-
gramming Console once the password has been entered.
If it is necessary to have the PC in PROGRAM mode, (for the PROM Writer,
Floppy Disk Interface Unit, etc.), be sure to select this mode before connecting
the peripheral device; or, alternatively, apply power to the PC after the peripheral
device is connected.
The mode will not change when a peripheral device is removed from the PCafter
PC power is turned on.

Mode Changes

TheProgrammingConsole Section 4-5

!

60

WARNING Always confirm that the Programming Console is in PROGRAM mode when
turning on the PC with a Programming Console connected unless another mode
is desired for a specific purpose. If the Programming Console is in RUN mode
when PC power is turned on, any program in Program Memory will be executed,
possibly causing a PC-controlled system to begin operation. If the START input
on the CPU Power Supply Unit is ON and there is no device connected to the
CPU, ensure that commencing operation is safe and appropriate before turning
on the PC.

4-5-3 The Display Message Switch
Next to the external connector for peripheral devices on the PC there is a small
switch for selecting either Japanese or English language messages for display
on the Programming Console. It is factory set to OFF, which causes English lan-
guage messages to be displayed.

4-6 Preparation for Operation
This section describes the procedures required to begin Programming Console
operation. These include password entry, clearing memory, error message
clearing, and I/O table operations. I/O table operations are also necessary at
other times, e.g., when changes are to be made in Units used in the PC configu-
ration.
The following sequence of operations must be performed before beginning in-
itial program input.

1,2,3... 1. Confirm that all wiring for the PC has been installed and checked properly.
2. Confirm that a RAM Unit is mounted as the Memory Unit and that the

write-protect switch is OFF.
3. Connect the Programming Console to the PC. Make sure that the Program-

ming Console is securely connected or mounted to the CPU; improper con-
nection may inhibit operation.

4. Set the mode switch to PROGRAM mode.
5. Turn on PC power.
6. Enter the password.*
7. Clear memory.
8. Register the I/O table.
9. Check the I/O table until the I/O table and system configuration are correct

and in agreement.
*Unlike the C500 and C1000H PCs, it is not necessary to register the I/O table.
Register the I/O table if you want an error alarm to be given when I/O Units are
added, removed, or interchanged with a different type.
Each of these operations from entering the password on is described in detail in
the following subsections. All operations should be done in PROGRAM mode
unless otherwise noted.

4-6-1 Entering the Password
To gain access to the PC’s programming functions, youmust first enter thepass-
word. The password prevents unauthorized access to the program.
The PC prompts you for a password when PC power is turned on or, if PC power
is already on, after the Programming Console has been connected to the PC. To
gain access to the system when the “Password!” message appears, press CLR
and then MONTR. Then press CLR to clear the display.
If the Programming Console is connected to the PC when PC power is already
on, the first display below will indicate the mode the PC was in before the Pro-

Preparation forOperation Section 4-6

61

grammingConsolewas connected. Ensure that thePCis in PROGRAM mode
before you enter the password. When the password is entered, the PC will
shift to the mode set on the mode switch, causing PC operation to begin if the
mode is set to RUN or MONITOR. The mode can be changed to RUN or MONI-
TOR with the mode switch after entering the password.

Indicates the mode set by the mode selector switch.

<PROGRAM >
PASSW ORD

<PROGRAM > BZ

4-6-2 Buzzer

Immediately after the password is input or anytime immediately after the mode
has been changed, SHIFT and then the 1 key can be pressed to turn on and off
the buzzer that sounds when Programming Console keys are pressed. If BZ is
displayed in the upper right corner, the buzzer is operative. If BZ is not displayed,
the buzzer is not operative.

This buzzer also will also sound whenever an error occurs during PC operation.
Buzzer operation for errors is not affected by the above setting.

4-6-3 Clearing Memory

Using the Memory Clear operation it is possible to clear all or part of the Program
Memory, and the IR, HR, AR, DM and TC areas. Unless otherwise specified, the
clear operation will clear all of the above memory areas, provided that the Mem-
ory Unit attached to the PC is a RAM Unit or an EEPROM Unit and the write-en-
able switch is ON. If the write-enable switch is OFF or the Memory Unit is an
EPROM Unit, Program Memory cannot be cleared.

Before beginning to programming for the first time or when installing a new pro-
gram, all areas should normally be cleared. Before clearing memory, check to
see if a program is already loaded that you need. If you need the program, clear
only the memory areas that you do not need, and be sure to check the existing
program with the program check key sequence before using it. The check se-
quence is provided later in this section. Further debugging methods are pro-
vided in Section 7 Program Monitoring and Execution. To clear all memory areas
press CLR until all zeros are displayed, and then input the keystrokes given in
the top line of the following key sequence. The branch lines shown in the se-
quence are used only when performing a partial memory clear, which is de-
scribed below.

Memory can be cleared in PROGRAM mode only.

Preparation forOperation Section 4-6

62

Key Sequence

Both AR and HR areas

TC area

DM area

Program Memory cleared

from designated address.

Retained if pressed

The following procedure is used to clear memory completely.

Continue pressing
the CLR key once for
each error message
until “00000” appears
on the display

All clear

M EM ORY ERR

I/O VER ERR

00000

00000M EM CLR ?
HR CNT DM

00000M EM CLR
END HR CNT DM

00000

It is possible to retain the data in specified areas or part of the Program Memory.
To retain the data in the HR and AR, TC, and/or DM areas, press the appropriate
key after entering REC/RESET. HR is pressed to designate both the HR and AR
areas. In other words, specifying that HR is to be retained will ensure that AR is
retained also. If not specified for retention, both areas will be cleared. CNT is
used for the entire TC area. The display will show those areas that will be
cleared.

It is also possible to retain a portion of the Program Memory from the beginning
to a specified address. After designating the data areas to be retained, specify
the first Program Memory address to be cleared. For example, to leave ad-
dresses 00000 to 00122 untouched, but to clear addresses from 00123 to the
end of Program Memory, input 00123.

All Clear

Partial Clear

Preparation forOperation Section 4-6

63

To leave the TC area uncleared and retaining Program Memory addresses
00000 through 00122, input as follows:

00000

00000

00000

00000M EM CLR ?
HR CNT DM

00000M EM CLR ?
HR DM

00123M EM CLR ?
HR DM

00000M EM CLR
END HR DM

4-6-4 Registering the I/O Table
The I/O Table Registration operation writes the types of I/O Units controlled by
the PC and the Rack locations of the I/O Units into the I/O table memory area of
the CPU (see 3-3 I/R Area). It also clears all I/O bits. The I/O table must be regis-
tered before programming operations are begun. As the I/O table remains in
memory, a new I/O table must also be registered whenever I/O Units are
changed.

Unlike the C500H and C1000H PCs, C200H memory is allocated to slots in the
CPU and Extension I/O Racks, so it is not necessary to register the I/O table.
Register the I/O table if you want an error to occur when I/O Units have been
added, removed, or replaced with another type.

I/O TableRegistrationcanbeperformed only in PROGRAM mode. Thewrite-en-
able switch on the Memory Unit must be ON (ON=“WRITE”).

The I/O verification error message, “I/O VER ERR” or “I/O SET ERROR”, will
appear when starting programming operations or after I/O Units have been
changed. This error is cleared by registering a new I/O table.

When the I/O table has not been registered, the PC will operate according to the
I/O Units mounted when power is applied. The I/O verification/setting error will
not occur.

Group-2 High-density I/O Units will not be displayed in the I/O table when it is
displayed using a GPC, FIT, or host computer. Four asterisks (****), indicating
no Unit, will be displayed instead.

Key Sequence

Preparation forOperation Section 4-6

64

Initial I/O Table Registration

Register I/O table

Memory cleared completely

00000

00000
FUN (??)

00000I/OTBL?
?-?U=

00000I/OTBL W RIT
????

00000I/OTBL W RIT
9713

00000I/OTBL W RIT
OK

4-6-5 Clearing Error Messages
After the I/O table has been registered, any error messages recorded inmemory
should be cleared. It is assumed here that the causes of any of the errors for
which error messages appear have already been taken care of. If the beeper
sounds when an attempt is made to clear an error message, eliminate the cause
of the error, and then clear the error message (refer to Section 8 Troubleshoot-
ing).

To display any recorded error messages, press CLR, FUN, and then MONTR.
The first message will appear. Pressing MONTR again will clear the present
message and display the next error message. Continue pressing MONTR until
all messages have been cleared.

Although error messages can be accessed in any mode, they can be cleared
only in PROGRAM mode.

Key Sequence

4-6-6 Verifying the I/O Table
The I/O Table Verification operation is used to check the I/O table registered in
memory to see if it matches the actual sequence of I/O Units mounted. The first
inconsistency discovered will be displayed as shown below. Every subsequent
pressing of VER displays the next inconsistency.

Key Sequence

Preparation forOperation Section 4-6

65

Example

(No errors)

(An error occurred)

Actual I/O words

Registered I/O table words

I/O slot number

Rack number

00000

00000
FUN (??)

00000I/OTBL?
?-?U=

00000I/OTBL VER
OK

00000I/OTBL VER
0-1U=O***I***

Meaning of Displays

Duplication

Indicates a Remote I/O Unit
that has not been registered

00000I/OTBL VER
**=R*-I R*-W

00000I/OTBL VER
*-*U=**** RM T*

Preparation forOperation Section 4-6

66

4-6-7 Reading the I/O Table

The I/O Table Read operation is used to access the I/O table that is currently
registered in the CPU memory.

Key Sequence

[0 to 2] [0 to 9]

Rack
number

Unit
number

Press the EXT key to select Remote
I/O Slave Racks or Optical I/O Units.

00000

00000
FUN (??)

00000I/OTBL ?
?-?U=

00000I/OTBL ?
0-?U=

00000I/OTBL ?
0-5U=

00000I/OTBL READ
0-5U=i*** 005

00000I/OTBL READ
0-4U=o*** 004

00000I/OTBL READ
0-5U=i*** 005

00000I/OTBL ?
R??-?U=

00000I/OTBL ?
2??LU=

(Slave Rack Units)

(Optical I/O Unit)

(PC Unit)

Meaning of Displays

I/O Unit Designations for Displays (see I/O Units Mounted in Remote Slave Racks, next page)

Example

Preparation forOperation Section 4-6

67

No. of points

16

32

64

Input Unit Output Unit

C500, 1000H/C2000H I/O Units

No. of points

8

16

Input Unit Output Unit

0000

00**

0***I***

II**

IIII

i(*)**

ii** oo**

o***

C200H I/O Units

Note: (*) is i for non-fatal errors or F_

I/O word number

I/O type: i: (input), o: (output)

Unit number (0 to 9)

Rack number (0 to 2)

00000I/OTBL READ
*-*U=**** ***

Unit number (0 to 9)

Indicates Special I/O Unit

00000I/OTBL READ
*-*U=$***

Blank: Unit 1 exclusively
W: Unit 2 exclusively

Special I/O
Unit type:

C: High-speed Counter
N: Host Link Unit
A: Other

Remote I/O
Master no. (0 to 1)

00000I/OTBL READ
*-*U=RM T*

I/O word number

I/O type: I, O
i, o (see tables on previous page)

Unit number (0 to 9)

Remote I/O Slave Unit number (0 to 4)

Remote I/O Master Unit number (0 to 1)

Indicates a Remote I/O Rack

00000I/OTBL READ
R**-*U=**** ***

I/O Units

Special I/O Units

Remote I/O Master Units

Remote I/O Slave Racks

Preparation forOperation Section 4-6

68

Unit number (0 to 9)

Indicates Group-2 High-density I/O Unit

00000I/OTBL READ
*-*U=#***

2: 2 words (32 pts)
4: 4 words (64 pts)

I: Input Unit
O: Output Unit

Note Group-2 High-density I/O Units will not be displayed in the I/O table when it is
displayed using a GPC, FIT, or LSS (host computer). Four asterisks (****), indi-
cating no Unit, will be displayed instead.

I/O word number (200 to 231)

I/O type: I (input), O (output), or
W (input/output)

Remote I/O Master Unit number (0 to 1)

Word (H: leftmost 8 bits; L: rightmost 8 bits)

00000I/OTBL READ
2**HU=R*-*

4-6-8 Clearing the I/O Table
The I/O Table Clear operation is used to delete the contents of the I/O table that
is currently registered in the CPU memory. The PC will be set for operation
based on the I/O Units mounted when the I/O Table Clear operation is per-
formed.
The I/O Table Clear operation will reset all Special I/O Units and Link Units
mounted at the time. Do not perform the I/O Table Clear operation when a Host
or PC Link Unit, Remote I/O Master Unit, High-speed Counter Unit, Position
Control Unit, or other Special I/O Unit is in operation.

Group-2 High-density I/O
Units

Optical I/O Units and
Remote Terminals

Preparation forOperation Section 4-6

69

Key Sequence

00000

00000
FUN (??)

00000I/OTBL
?-?U=

00000I/OTBL CLR
????

00000I/OTBL CLR
9713

00000I/OTBL CLR
OK

00000I/OTBL W RIT
????

4-6-9 SYSMAC NET Link Table Transfer (CPU31-E Only)

The SYSMAC NET Link Table Transfer operation transfers a copy of the SYS-
MAC NET Link Data Link table to RAM or EEPROM program memory.This al-
lows the user program and SYSMAC NET Link table to be written into EPROM
together. This operation is applicable to the CPU31-E only.

Note When power is applied to a PC which has a copy of a SYSMAC NET Link table
stored in its program memory, the SYSMAC NET Link table of the CPU will be
overwritten. Changes made in the SYSMAC NET Link table do not affect the
copy of the SYSMAC NET Link table in program memory; SYSMAC NET Link
Table Transfer must be repeated to change the copy in program memory.

The SYSMAC NET Link Table Transfer operation will not work if:

! The Memory Unit is not RAM or EEPROM, or the write protect switch is not set
to write.

! There isn’t an END(01) instruction.

! The contents of program memory exceeds 2.3K words with a 4K memory, or
6.4K words with an 8K memory. (To find the size of the contents of program
memory, do an instruction search for END(01).)

SYSMAC NET Link table transfer can only be done in PROGRAM mode.

Example

Preparation forOperation Section 4-6

70

Key Sequence

00000LINK TBL~UM
(SYSM AC-NET)????

00000LINK TBL~UM
OK

00000LINK TBL~UM
(SYSM AC-NET)9713

00000LINK TBL~UM
DISABLED

The following indicates that the
I/O table cannot be transferred.

00000

00000
FUN(??)

Example

Preparation forOperation Section 4-6

71

4-7 Inputting, Modifying, and Checking the Program
Once a program is written in mnemonic code, it can be input directly into the PC
from a Programming Console. Mnemonic code is keyed into Program Memory
addresses from the Programming Console. Checking the program involves a
syntax check to see that the program has been written according to syntax rules.
Once syntax errors are corrected, a trial execution can begin and, finally, correc-
tion under actual operating conditions can be made.
The operations required to input a program are explained below. Operations to
modify programs that already exist in memory are also provided in this section,
as well as the procedure to obtain the current cycle time.
Before starting to input a program, check to see whether there is a program al-
ready loaded. If there is a program loaded that you do not need, clear it first using
the program memory clear key sequence, then input the new program. If you
need the previous program, be sure to check it with the program check key se-
quence and correct it as required. Further debugging methods are provided in
Section 7 Monitoring and Execution.

4-7-1 Setting and Reading from Program Memory Address
When inputting a program for the first time, it is generally written to Program
Memory starting from address 00000. Because this address appears when the
display is cleared, it is not necessary to specify it.
When inputting a program starting from other than 00000 or to read or modify a
program that already exists inmemory, thedesired address must bedesignated.
To designate an address, press CLR and then input the desired address. Lead-
ing zeros of the address need not be input, i.e., when specifyingan address such
as 00053 you need to enter only 53. The contents of the designated address will
not be displayed until the down key is pressed.
Once the down key has been pressed to display the contents of the designated
address, the up and down keys can be used to scroll through Program Memory.
Each time one of these keys is pressed, the next or previous word in Program
Memory will be displayed.
If Program Memory is read in RUN or MONITOR mode, the ON/OFF status of
any displayed bit will also be shown.

Key Sequence

Inputting,M odifying,andCheckingtheProgram Section 4-7

72

If the following mnemonic code has already been input into Program Memory,
the key inputs below would produce the displays shown.

00000

00200

00200READ OFF
LD 00000

00201READ ON
AND 00001

00202READ OFF
TIM 000

00202
TIM #0123

00203READ ON
LD 00100

Address Instruction Operands

00200 LD 00000
00201 AND 00001
00202 TIM 000

0123
00203 LD 00100

4-7-2 Entering and Editing Programs
Programs can be entered and edited only in PROGRAM mode.
The same procedure is used to either input a program for the first time or to edit a
program that already exists. In either case, the current contents of Program
Memory is overwritten, i.e., if there is no previous program, the NOP(00) instruc-
tion, which will be written at every address, will be overwritten.
To enter a program, input the mnemonic code that was produced from the ladder
diagram step-by-step, ensuring that the correct address is set before starting.
Once the correct address is displayed, enter the first instruction word and press
WRITE. Next, enter the required operands, pressing WRITE after each, i.e.,
WRITE is pressedat theend of each lineof themnemonic code. When WRITE is
pressed at the end of each line, the designated instruction or operand is entered
and the next display will appear. If the instruction requires two or more words, the
next display will indicate the next operand required and provide a default value
for it. If the instruction requires only one word, the next address will be displayed.
Continue inputting each line of the mnemonic code until the entire program has
been entered.
When inputting numeric values for operands, it is not necessary to input leading
zeros. Leading zeros are required only when inputting function codes (see be-
low). When designating operands, be sure to designate the data area for all but
IR and SR addresses by pressing thecorresponding dataarea key, and todesig-
nate each constant by pressing CONT/#. CONT/# is not required for counter or
timer SVs (see below). The AR area is designated by pressing SHIFT and then
HR. TC numbers as bit operands (i.e., completion flags) are designated by
pressing either TIM or CNT before the address, depending on whether the TC
number has been used to define a timer or a counter. To designate an indirect
DM address, press CH/*before the address (pressing DM is not necessary for
an indirect DM address).

The SV (set value) for a timer or counter is generally entered as a constant, al-
though inputting the address of a word that holds the SV is also possible. When
inputting an SV as a constant, CONT/# is not required; just input the numeric

Example

Inputting SV for Counters
and Timers

Inputting,M odifying,andCheckingtheProgram Section 4-7

!

73

value and press WRITE. To designate a word, press CLR and then input the
word address as described above.

The most basic instructions are input using the Programming Console keys pro-
vided for them. All other instructions are entered using function codes. These
function codes are always written after the instruction’s mnemonic. If no function
code is given, there should be a Programming Console key for that instruction.
There are two types of function codes: those for normal instructions and those
for block instructions. Function codes for block instructions are always written
between pointed parentheses <like this>. Both types of function codes are used
in basically the same way, but SHIFT must be pressed before inputting a block
instruction function code.
To designate the differentiated form of an instruction, press NOT after the func-
tion code.
To input an instruction using a function code, set the address, press FUN, press
SHIFT if a block instruction is being entered, input the function code including
any leading zeros, press NOT if the differentiated form of the instruction is de-
sired, input any bit operands or definers required for the instruction, and then
press WRITE.

Caution Enter function codes with care and be sure to press SHIFT when required.

Key Sequence

[Address displayed] [Instruction word] [Operand]

Designating Instructions

Inputting,M odifying,andCheckingtheProgram Section 4-7

74

The following program can be entered using the key inputs shown below. Dis-
plays will appear as indicated.

00000

00200

00200
LD 00002

00201READ
NOP (00)

00201
TIM 000

00201TIM DATA
#0000

00201TIM
#0123

00202READ
NOP (00)

00202
FUN (??)

00202
TIM H (15) 001

00202TIM H DATA
#0000

00202TIM H
#0500

00203READ
NOP (00)

Address Instruction Operands

00200 LD 00002
00201 TIM 000

0123
00202 TIMH(15) 001

0500

The following error messages may appear when inputting a program. Correct
the error as indicated and continue with the input operation. The asterisks in the

Example

Error Messages

Inputting,M odifying,andCheckingtheProgram Section 4-7

75

displays shown below will be replaced with numeric data, normally an address,
in the actual display.

Message Cause and correction

****REPL ROM An attempt was made to write to ROM, or to write-protected RAM or EEPROM. Ensure
that a RAM or EEPROM Unit is mounted and that its write-protect switch is set to OFF.

****PROG OVER The instruction at the last address in memory is not NOP(00). Erase all unnecessary
instructions at the end of the program or use a larger Memory Unit.

****ADDR OVER An address was set that is larger than the highest memory in Program Memory. Input a
smaller address

****SETDATA ERR Data has been input in the wrong format or beyond defined limits, e.g., a hexadecimal
value has been input for BCD. Re-enter the data. This error will generate a FALS 00
error.

****I/O NO.ERR A data area address has been designated that exceeds the limit of the data area, e.g.,
an address is too large. Confirm the requirements for the instruction and re-enter the
address.

4-7-3 Checking the Program

Once a program has been entered, the syntax should be checked to verify that
no programming rules have been violated. This check should also be performed
if the program has been changed in any way that might create a syntax error.

To check the program, input the key sequence shown below. The numbers indi-
cate the desired check level (see below). When the check level is entered, the
program check will start. If an error is discovered, the check will stop and a dis-
play indicating the error will appear. Press SRCH to continue the check. If an er-
ror is not found, the program will be checked through to the first END(01), with a
display indicating when each 64 instructions have been checked (e.g., display
#1 of the example after the following table).

CLR can be pressed to cancel the check after it has been started, and a display
like display #2, in the example, will appear. When the check has reached the first
END, a display like display #3 will appear.

A syntax check can be performed on a program only in PROGRAM mode.

Key Sequence

To check
up to END(01)

To abort

(0, 1, 2, Check levels)

Three levels of program checking are available. The desired level must be des-
ignated to indicate the type of errors that are to be detected. The following table
provides the error types, displays, and explanations of all syntax errors. Check
level 0 checks for type A, B, and C errors; check level 1, for type A and B errors;
and check level 2, for type A errors only.

The address where the error was generated will also be displayed.

Check Levels and Error
Messages

Inputting,M odifying,andCheckingtheProgram Section 4-7

76

Many of the following errors are for instructions that have not yet been described
yet. Refer to 4-8 Controlling Bit Status or to Section 5 Instruction Set for details
on these.

Type Message Meaning and appropriate response

Type A ????? The program has been lost. Re-enter the program.

NO END INSTR There is no END(01) in the program. Write END(01) at the final address in the
program.

CIRCUIT ERR The number of logic blocks and logic block instructions does not agree, i.e., either
LD or LD NOT has been used to start a logic block whose execution condition has
not been used by another instruction, or a logic block instruction has been used
that does not have the required number of logic blocks. Check your program.

LOCN ERR An instruction is in the wrong place in the program. Check instruction requirements
and correct the program.

DUPL The same jump number, block number, or subroutine number has been used
twice. Correct the program so that the same number is only used once for each.
(Jump number 00 may be used as often as required.)

SBN UNDEFD SBS(91) has been programmed for a subroutine number that does not exist.
Correct the subroutine number or program the required subroutine.

JM E UNDEFD A JME(04) is missing for a JMP(05). Correct the jump number or insert the proper
JME(04).

OPERAND ERR A constant entered for the instruction is not within defined values. Change the
constant so that it lies within the proper range.

STEP ERR STEP(08) with a section number and STEP(08) without a section number have
been used correctly. Check STEP(08) programming requirements and correct the
program.

Type B IL-ILC ERR IL(02) and ILC(03) are not used in pairs. Correct the program so that each IL(02)
has a unique ILC(03). Although this error message will appear if more than one
IL(02) is used with the same ILC(03), the program will executed as written. Make
sure your program is written as desired before proceeding.

JM P-JM E ERR JMP(04) 00 and JME(05) 00 are not used in pairs. Although this error message will
appear if more than one JMP(04) 00 is used with the same JME(05) 00, the
program will be executed as written. Make sure your program is written as desired
before proceeding.

SBN-RET ERR If the displayed address is that of SBN(92), two different subroutines have been
defined with the same subroutine number. Change one of the subroutine numbers
or delete one of the subroutines. If the displayed address is that of RET(93),
RET(93) has not been used properly. Check requirements for RET(93) and correct
the program.

Type C JM P UNDEFD JME(05) has been used with no JMP(04) with the same jump number. Add a
JMP(04) with the same number or delete the JME(05) that is not being used.

SBS UNDEFD A subroutine exists that is not called by SBS(91). Program a subroutine call in the
proper place, or delete the subroutine if it is not required.

COIL DUPL The same bit is being controlled (i.e., turned ON and/or OFF) by more than one
instruction (e.g., OUT, OUT NOT, DIFU(13), DIFD(14), KEEP(11), SFT(10),
SET<07>). Although this is allowed for certain instructions, check instruction
requirements to confirm that the program is correct or rewrite the program so that
each bit is controlled by only one instruction.

Inputting,M odifying,andCheckingtheProgram Section 4-7

77

The following example shows some of the displays that can appear as a result of
a program check.

Display #2

Display #3

Halts program check

Check continues until END(01)

When errors are found

Display #1

00128PROG CHKEND

03000PROG CHK
END (01)(03.6KW)

00178CIRCUIT ERR
OUT 00200

00196COIL DUPL
OUT 00200

00200IL-ILC ERR
ILC (03)

32000NO ENDINSTR
END

00000

00000PROG CHK
CHKLEVEL (0-2)?

00064PROG CHK

4-7-4 Displaying the Cycle Time
Once the program has been cleared of syntax errors, the cycle time should be
checked. This is possible only in RUN or MONITOR mode while the program is
being executed. See Section 6 Program Execution Timing for details on the
cycle time.

To display the current average cycle time, press CLR then MONTR. The time
displayed by this operation is a typical cycle time. The differences in displayed
values depend on the execution conditions that exist when MONTR is pressed.

Example

00000

00000CYCLE TIM E
054.1M S

00000CYCLE TIM E
053.9M S

Example

Inputting,M odifying,andCheckingtheProgram Section 4-7

78

4-7-5 Program Searches
The program can be searched for occurrences of any designated instruction or
data area address used in an instruction. Searches can be performed from any
currently displayed address or from a cleared display.
To designate a bit address, press SHIFT, press CONT/#, then input the address,
including any data area designation required, and press SRCH. To designate an
instruction, input the instruction just as when inputting the program and press
SRCH. Once an occurrence of an instruction or bit address has been found, any
additional occurrences of the same instruction or bit can be found by pressing
SRCH again. SRCH’G will be displayed while a search is in progress.
When the first word of a multiword instruction is displayed for a searchoperation,
the other words of the instruction can be displayed by pressing the down key be-
fore continuing the search.
If Program Memory is read in RUN or MONITOR mode, the ON/OFF status of
any bit displayed will also be shown.

Key Sequence

Inputting,M odifying,andCheckingtheProgram Section 4-7

79

00000

00000
LD 00000

00200SRCH
LD 00000

00202
LD 00000

06000SRCH
END (01)(06.4KW)

00000

00100

00100
TIM 001

00203SRCH
TIM 001

00203TIM DATA
#0123

00000

00000CONT SRCH
CONT 00005

00200CONT SRCH
LD 00005

00203CONT SRCH
AND 00005

06000
END (01)(06.4K)

4-7-6 Inserting and Deleting Instructions
In PROGRAM mode, any instruction that is currently displayed canbe deletedor
another instruction can be inserted before it. These are not possible in RUN or
MONITOR modes.
To insert an instruction, display the instruction before which you want the new
instruction to be placed, input the instruction word in the same way as when in-
putting a program initially, and then press INS and the down key. If other words
are required for the instruction, input these in the same way as when inputting
the program initially.

Example:
Instruction Search

Example:
Bit Search

Inputting,M odifying,andCheckingtheProgram Section 4-7

!

80

To delete an instruction, display the instruction word of the instruction to be de-
leted and then press DEL and the up key. All the words for the designated in-
struction will be deleted.

Caution Be careful not to inadvertently delete instructions; there is no way to recover
them without reinputting them completely.

Key Sequences

When an instruction is inserted or deleted, all addresses in Program Memory
following the operation are adjusted automatically so that there are no blank ad-
dresses or no unaddressed instructions.

The following mnemonic code shows the changes that are achieved in a pro-
gram through the key sequences and displays shown below.

Original Program

Address Instruction Operands

00000 LD 00100
00001 AND 00101
00002 LD 00201
00003 AND NOT 00102
00004 OR LD -
00005 AND 00103
00006 AND NOT 00104
00007 OUT 00201
00008 END(01) -

0010500100 00103 0010400101

00201

END(01)

00102

00201

Delete

0010400100 00103

00105

00101

00201

END(01)

00102

00201

Before Insertion: Before Deletion:

The following key inputs and displays show the procedure for achieving the pro-
gram changes shown above.

Example

Inputting,M odifying,andCheckingtheProgram Section 4-7

81

Find the address
prior to the inser-
tion point

Insert the
instruction

Program After Insertion

Inserting an Instruction

00000

00000
OUT 00000

00000
OUT 00201

00207SRCH
OUT 00201

00206READ
AND NOT 00104

00206
AND 00000

00206
AND 00105

00206INSERT?
AND 00105

00207INSERT END
AND NOT 00104

00206READ
AND 00105

Address Instruction Operands

00000 LD 00100
00001 AND 00101
00002 LD 00201
00003 AND NOT 00102
00004 OR LD -
00005 AND 00103
00006 AND 00105
00007 AND NOT 00104
00008 OUT 00201
00009 END(01) -

Find the instruction
that requires deletion.

Confirm that this is the
instruction to be deleted.

Program After Deletion

Deleting an Instruction

00000

00000
OUT 00000

00000
OUT 00201

00208SRCH
OUT 00201

00207READ
AND NOT 00104

00207DELETE?
AND NOT 00104

00207DELETE END
OUT 00201

00206READ
AND 00105

Address Instruction Operands

00000 LD 00100
00001 AND NOT 00101
00002 LD 00201
00003 AND NOT 00102
00004 OR LD -
00005 AND 00103
00006 AND 00105
00007 AND NOT 00104
00008 OUT 00201

Inputting,M odifying,andCheckingtheProgram Section 4-7

82

4-7-7 Branching Instruction Lines

When an instruction line branches into two or more lines, it is sometimes neces-
sary to use either interlocks or TR bits to maintain the execution condition that
existed at a branching point. This is because instruction lines are executed
across to a right-hand instruction before returning to the branching point to ex-
ecute instructions on a branch line. If a condition exists on any of the instruction
lines after the branching point, the execution condition could change during this
time making proper execution impossible. The following diagrams illustrate this.
In both diagrams, instruction 1 is executed before returning to the branching
point and moving on to the branch line leading to instruction 2.

Instruction 1

00002

00000

Instruction 2

Branching
point

Instruction 1

00002

00000

Instruction 2

Branching
point

Diagram B: Incorrect Operation

Diagram A: Correct Operation

00001

Address Instruction Operands

00000 LD 00000
00001 Instruction 1
00002 AND 00002
00003 Instruction 2

Address Instruction Operands

00000 LD 00000
00001 AND 00001
00002 Instruction 1
00003 AND 00002
00004 Instruction 2

If, as shown in diagram A, the execution condition that existed at the branching
point cannot be changed before returning to the branch line (instructions at the
far right do not change the execution condition), then the branch line will be ex-
ecuted correctly and no special programming measure is required.

If, as shown in diagram B, a conditionexists between the branchingpoint and the
last instruction on the top instruction line, the execution condition at the branch-
ing point and the execution condition after completing the top instruction line will
sometimes be different, making it impossible to ensure correct execution of the
branch line.

There are two means of programming branching programs to preserve the ex-
ecution condition. One is to use TR bits; the other, to use interlocks
(IL(02)/IL(03)).

The TR area provides eight bits, TR 0 through TR 7, that can be used to tempo-
rarily preserve execution conditions. If a TR bit is placed at a branching point, the
current execution condition will be stored at the designated TR bit. When return-
ing to the branching point, the TR bit restores the execution status that was
saved when the branching point was first reached in program execution.

The previous diagram B can be written as shown below to ensure correct execu-
tion. In mnemonic code, the execution condition is stored at the branching point
using the TR bit as the operand of the OUTPUT instruction. This execution con-

TR Bits

Inputting,M odifying,andCheckingtheProgram Section 4-7

83

dition is then restored after executing the right-hand instruction by using the
same TR bit as the operand of a LOAD instruction

Instruction 1

00002

00000

Instruction 2

Diagram B: Corrected Using a TR bit

00001
TR 0 Address Instruction Operands

00000 LD 00000
00001 OUT TR 0
00002 AND 00001
00003 Instruction 1
00004 LD TR 0
00005 AND 00002
00006 Instruction 2

In terms of actual instructions the abovediagram wouldbe as follows: Thestatus
of IR 00000 is loaded (a LOAD instruction) to establish the initial execution con-
dition. This execution condition is then output using an OUTPUT instruction to
TR 0 to store the execution condition at the branching point. The execution con-
dition is then ANDed with the status of IR 00001 and instruction 1 is executed
accordingly. The execution condition that was stored at the branching point is
then re-loaded (a LOADinstruction withTR 0as theoperand), this is ANDedwith
the status of IR 00002, and instruction 2 is executed accordingly.
The following example shows an application using two TR bits.

Instruction 1

00003

00000 00002
TR 1

00005

TR 0
00001

00004

Instruction 2

Instruction 3

Instruction 4

Address Instruction Operands

00000 LD 00000
00001 OUT TR 0
00002 AND 00001
00003 OUT TR 1
00004 AND 00002
00005 OUT 00500
00006 LD TR 1
00007 AND 00003
00008 OUT 00501
00009 LD TR 0
00010 AND 00004
00011 OUT 00502
00012 LD TR 0
00013 AND NOT 00005
00014 OUT 00503

In this example, TR 0 and TR 1 are used to store the execution conditions at the
branching points. After executing instruction 1, the execution condition stored in
TR 1 is loaded for an AND with the status IR 00003. The execution condition
stored in TR 0 is loaded twice, the first time for an AND with the status of IR
00004 and the second time for an AND with the inverse of the status of IR 00005.
TR bits can be used as many times as required as long as the same TR bit is not
used more than once in the same instruction block. Here, a new instructionblock
is begun each time execution returns to the bus bar. If, in a single instruction
block, it is necessary to have more than eight branching points that require the
execution condition be saved, interlocks (which are described next) must be
used.
When drawing a ladder diagram, be careful not to use TR bits unless necessary.
Often the number of instructions required for a program can be reduced and
ease of understanding a program increased by redrawing a diagram that would
otherwise required TR bits. In both of the following pairs of diagrams, the bottom
versions require fewer instructions and do not require TR bits. In the first exam-
ple, this is achieved by reorganizing the parts of the instruction block: the bottom
one, by separating the second OUTPUT instruction and using another LOAD in-
struction to create the proper execution condition for it.

Inputting,M odifying,andCheckingtheProgram Section 4-7

84

Note Although simplifying programs is always a concern, the order of execution of in-
structions is sometimes important. For example, a MOVE instruction may be re-
quired before the execution of a BINARY ADD instruction to place the proper
data in the required operand word. Be sure that you have considered execution
order before reorganizing a program to simplify it.

Instruction 1
00000

Instruction 2

00001
TR 0

Instruction 2
00000

Instruction 1
00001

Instruction 1

00000

Instruction 2

00003

TR 0
00001

00004

00002

00001 00003

00000

00004

00002

00001

Instruction 1

Instruction 2

Note TR bits are only used when programming using mnemonic code. They are not
necessary when inputting ladder diagrams directly, as is possible from a GPC.
The above limitations on the number of branching points requiring TR bits, and
considerations on methods to reduce the number of programming instructions,
still hold.

The problem of storing execution conditions at branching points can also be
handled by using the INTERLOCK (IL(02)) and INTERLOCK CLEAR (ILC(03))
instructions to eliminate the branching point completely while allowing a specific
execution condition to control a group of instructions. The INTERLOCK and IN-
TERLOCK CLEAR instructions are always used together.
When an INTERLOCK instruction is placed before a section of a ladder pro-
gram, the execution condition for the INTERLOCK instruction will control the ex-
ecution of all instruction up to the next INTERLOCK CLEAR instruction. If the
execution condition for the INTERLOCK instruction is OFF, all right-hand in-
structions through the next INTERLOCK CLEAR instruction will be executed
with OFF execution conditions to reset the entire section of the ladder diagram.
The effect that this has onparticular instructions is described in 5-9 INTERLOCK
and INTERLOCK CLEAR -- IL(02) and ILC(03).

Interlocks

Inputting,M odifying,andCheckingtheProgram Section 4-7

85

Diagram B can also be corrected with an interlock. Here, the conditions leading
up to the branching point are placed on an instruction line for the INTERLOCK
instruction, all of lines leading from the branching point are written as separate
instruction lines, and another instruction line is added for the INTERLOCK
CLEAR instruction. No conditions are allowed on the instruction line for INTER-
LOCK CLEAR. Note that neither INTERLOCK nor INTERLOCK CLEAR re-
quires an operand.

Instruction 1

00002

00000

Instruction 2

00001

ILC(03)

IL(02) Address Instruction Operands

00000 LD 00000
00001 IL(02) ---
00002 LD 00001
00003 Instruction 1
00004 LD 00002
00005 Instruction 2
00006 ILC(03) ---

If IR 00000 is ON in the revised version of diagram B, above, the status of IR
00001 and that of IR 00002 would determine the execution conditions for in-
structions 1 and2, respectively. Because IR00000 is ON, this would produce the
same results as ANDing the status of each of these bits. If IR 00000 is OFF, the
INTERLOCK instruction would produce an OFF execution condition for instruc-
tions 1 and 2 and then execution would continue with the instruction line follow-
ing the INTERLOCK CLEAR instruction.

As shown in the following diagram, more than one INTERLOCK instruction can
be used within one instruction block; each is effective through the next INTER-
LOCK CLEAR instruction.

Instruction 1

00000

Instruction 2

00001

ILC(03)

IL(02)

00004

Instruction 3

Instruction 4
00006

00005

00003

00002

IL(02)

Address Instruction Operands

00000 LD 00000
00001 IL(02) ---
00002 LD 00001
00003 Instruction 1
00004 LD 00002
00005 IL(02) ---
00006 LD 00003
00007 AND NOT 00004
00008 Instruction 2
00009 LD 00005
00010 Instruction 3
00011 LD 00006
00012 Instruction 4
00013 ILC(03) ---

If IR 00000 in the above diagram is OFF (i.e., if the execution condition for the
first INTERLOCK instruction is OFF), instructions 1 through 4 would be ex-
ecuted with OFF execution conditions and execution would move to the instruc-
tion following the INTERLOCK CLEAR instruction. If IR 00000 is ON, the status
of IR 00001 would be loaded as the execution condition for instruction 1 and then
the status of IR 00002 would be loaded to form the execution condition for the
second INTERLOCK instruction. If IR 00002 is OFF, instructions 2 through 4 will
be executed with OFF execution conditions. If IR 00002 is ON, IR 00003, IR
00005, and IR 00006 will determine the first execution condition in new instruc-
tion lines.

Inputting,M odifying,andCheckingtheProgram Section 4-7

86

4-7-8 Jumps
A specific section of a program can be skipped according to a designated execu-
tion condition. Although this is similar to what happens when the execution con-
dition for an INTERLOCK instruction is OFF, with jumps, the operands for all in-
structions maintain status. Jumps can therefore be used to control devices that
require a sustained output, e.g., pneumatics and hydraulics, whereas interlocks
can be used to control devices that donot requireda sustainedoutput, e.g., elec-
tronic instruments.
Jumps are created using the JUMP (JMP(04)) and JUMP END (JME(05)) in-
structions. If theexecution condition for aJUMP instruction is ON, the program is
executed normally as if the jump did not exist. If the execution condition for the
JUMP instruction is OFF, program execution moves immediately to a JUMP
END instruction without changing the status of anything between the JUMP and
JUMP END instruction.
All JUMP and JUMP END instructions are assigned jump numbers ranging be-
tween 00 and 99. There are two types of jumps. The jump number used deter-
mines the type of jump.
A jump can be defined using jump numbers 01 through 99 only once, i.e., eachof
these numbers can be used once in a JUMP instruction and once in a JUMP
END instruction. When a JUMP instruction assigned one of these numbers is
executed, execution moves immediately to the JUMP END instruction that has
the same number as if all of the instruction between them did not exist. Diagram
B from the TR bit and interlock example could be redrawn as shown below using
a jump. Although 01 has been used as the jump number, any number between
01 and 99 could be used as long as it has not already beenused ina different part
of the program. JUMP and JUMP ENDrequire noother operandand JUMP END
never has conditions on the instruction line leading to it.

Instruction 1

00002

00000

Instruction 2

Diagram B: Corrected with a Jump

00001

JME(05) 01

JMP(04) 01 Address Instruction Operands

00000 LD 00000
00001 JMP(04) 01
00002 LD 00001
00003 Instruction 1
00004 LD 00002
00005 Instruction 2
00006 JME(05) 015

This version of diagram B would have a shorter execution time when 00000 was
OFF than any of the other versions.
The other type of jump is created with a jump number of 00. As many jumps as
desired can be created using jump number 00 and JUMP instructions using 00
can be used consecutively without a JUMP END using 00 between them. It is
even possible for all JUMP 00 instructions to move program execution to the
same JUMP END 00, i.e., only one JUMP END 00 instruction is required for all
JUMP 00 instruction in the program. When 00 is used as the jump number for a
JUMP instruction, program execution moves to the instruction following the next
JUMP END instruction with a jump number of 00. Although, as in all jumps, no
status is changed and no instructions are executed between the JUMP 00 and
JUMP END 00 instructions, the program must search for the next JUMP END 00
instruction, producing a slightly longer execution time.
Execution of programs containing multiple JUMP 00 instructions for one JUMP
END 00 instruction is similar to that of interlocked sections. The following dia-
gram is the same as that used for the interlock example above, except redrawn
with jumps. The execution of this diagram would differ from that of the diagram
described above (e.g., in the previous diagram interlocks would reset certain

Inputting,M odifying,andCheckingtheProgram Section 4-7

87

parts of the interlocked section, however, jumps donot affect the status of any bit
between the JUMP and JUMP END instructions).

Instruction 1

00000

Instruction 2

00001

JME(05) 00

JMP(04) 00

00004

Instruction 3

Instruction 4
00006

00005

00003

00002

JMP(04) 00

Address Instruction Operands

00000 LD 00000
00001 JMP(04) 00
00002 LD 00001
00003 Instruction 1
00004 LD 00002
00005 JMP(04) 00
00006 LD 00003
00007 AND NOT 00004
00008 Instruction 2
00009 LD 00005
00010 Instruction 3
00011 LD 00006
00012 Instruction 4
00013 JME(05) 00

4-8 Controlling Bit Status
There are five instructions that can be used generally to control individual bit sta-
tus. These are the OUTPUT, OUTPUT NOT, DIFFERENTIATE UP,
DIFFERENTIATE DOWN, and KEEP instructions. All of these instructions ap-
pear as the last instruction in an instruction line and take a bit address for an op-
erand. Although details are provided in 5-8 Bit Control Instructions, these in-
structions (except for OUTPUT and OUTPUT NOT, which have already been in-
troduced) are described here because of their importance in most programs. Al-
though these instructions are used to turn ON and OFF output bits in the IR area
(i.e., to send or stop output signals to external devices), they are also used to
control the status of other bits in the IR area or in other data areas.

4-8-1 DIFFERENTIATE UP and DIFFERENTIATE DOWN
DIFFERENTIATE UP and DIFFERENTIATE DOWN instructions are used to
turn the operand bit ON for one cycle at a time. The DIFFERENTIATE UP in-
struction turns ON the operand bit for one cycle after the execution condition for
it goes from OFF to ON; the DIFFERENTIATE DOWN instruction turns ON the
operandbit for one cycleafter theexecution condition for it goes from ON toOFF.
Both of these instructions require only one line of mnemonic code.

00000

00001

DIFU(13) 00200

DIFD(14) 00201

Address Instruction Operands

00000 LD 00000
00001 DIFU(13) 00200

Address Instruction Operands

00000 LD 00001
00001 DIFD(14) 00201

Here, IR 00200 will be turned ON for one cycle after IR 00000 goes ON. The next
time DIFU(13) 00200 is executed, IR 00200 will be turned OFF, regardless of the
status of IR 00000. With the DIFFERENTIATE DOWN instruction, IR 00201 will
be turned ON for one cycle after IR 00001 goes OFF (IR 00201 will be kept OFF
until then), and will be turned OFF the next time DIFD(14) 00201 is executed.

ControllingBitStatus Section 4-8

88

4-8-2 KEEP
The KEEP instruction is used to maintain the status of the operand bit based on
two execution conditions. To do this, the KEEP instruction is connected to two
instruction lines. When the execution condition at the end of the first instruction
line is ON, the operand bit of the KEEP instruction is turned ON. When the exe-
cution condition at the end of the second instruction line is ON, the operand bit of
the KEEP instruction is turned OFF. The operand bit for the KEEP instruction will
maintain its ON or OFF status even if it is located in an interlocked section of the
diagram.
In the following example, HR 0000will be turned ONwhen IR00002 is ON and IR
00003 is OFF. HR 0000 will then remain ON until either IR 00004 or IR 00005
turns ON. With KEEP, as with all instructions requiring more than one instruction
line, the instruction lines are coded first before the instruction that they control.

00002

00004

00003

00005
R: reset input

S: set input KEEP(11)

HR 0000

Address Instruction Operands

00000 LD 00002
00001 AND NOT 00003
00002 LD 00004
00003 OR 00005
00004 KEEP(11) HR 0000

4-8-3 Self-maintaining Bits (Seal)
Although the KEEP instruction can be used to create self-maintaining bits, it is
sometimes necessary to create self-maintaining bits in another way so that they
can be turned OFF when in an interlocked section of a program.
To create a self-maintaining bit, the operand bit of an OUTPUT instruction is
used as a condition for the same OUTPUT instruction in an OR setup so that the
operand bit of the OUTPUT instruction will remain ON or OFF until changes oc-
cur in other bits. At least one other condition is used just before the OUTPUT
instruction to function as a reset. Without this reset, there would be no way to
control the operand bit of the OUTPUT instruction.
The above diagram for the KEEP instruction can be rewritten as shown below.
The only difference in these diagrams would be their operation in an interlocked
program section when the execution condition for the INTERLOCK instruction
was ON. Here, just as in the samediagram using the KEEP instruction, two reset
bits are used, i.e., HR 0000 can be turned OFF by turning ON either IR 00004 or
IR 00005.

00002 00003

HR 0000

HR 0000

00004

00005

Address Instruction Operands

00000 LD 00002
00001 AND NOT 00003
00002 OR HR 0000
00003 AND NOT 00004
00004 OR NOT 00005
00005 OUT HR 0000

4-9 Work Bits (Internal Relays)
In programming, combining conditions to directly produce execution conditions
is often extremely difficult. These difficulties are easily overcome, however, by
using certain bits to trigger other instructions indirectly. Such programming is

W orkBits Section 4-9

89

achieved by using work bits. Sometimes entire words are required for these pur-
poses. These words are referred to as work words.
Work bits are not transferred to or from the PC. They are bits selected by the
programmer to facilitate programming as described above. I/O bits and other
dedicated bits cannot be used as works bits. All bits in the IR area that are not
allocated as I/O bits, and certain unused bits in the AR area, are available for use
as work bits. Be careful to keep an accurate record of how and where you use
work bits. This helps in program planning and writing, and also aids in debugging
operations.

Work Bit Applications Examples given later in this subsection show two of the most common ways to
employ work bits. These should act as a guide to the almost limitless number of
ways in which the work bits can be used. Whenever difficulties arise in program-
ming a control action, consideration should be given to work bits and how they
might be used to simplify programming.
Work bits are often used with the OUTPUT, OUTPUT NOT, DIFFERENTIATE
UP, DIFFERENTIATE DOWN, and KEEP instructions. The work bit is used first
as the operand for one of these instructions so that later it can be used as a con-
dition that will determine how other instructions will be executed. Work bits can
also be used with other instructions, e.g., with the SHIFT REGISTER instruction
(SFT(10)). An example of the use of work words and bits with the SHIFT REGIS-
TER instruction is provided 5-14-1 SHIFT REGISTER -- SFT(10).
Although they are not always specifically referred to as work bits, many of the
bits used in the examples in Section 5 Instruction Set use work bits. Understand-
ing the use of these bits is essential to effective programming.

Work bits can be used to simplify programming when a certain combination of
conditions is repeatedly used in combination with other conditions. In the follow-
ing example, IR 00000, IR 00001, IR 00002, and IR 00003 are combined in a
logic block that stores the resulting execution condition as the status of IR
24600. IR 24600 is then combined with various other conditions to determine

Reducing Complex
Conditions

W orkBits Section 4-9

90

output conditions for IR 00100, IR 00101, and IR 00102, i.e., to turn the outputs
allocated to these bits ON or OFF.

00000

00003

00001

00004

00002

00005

00004

00007

00006

0000524600

24600

24600

24600

00100

00101

00102

Address Instruction Operands

00000 LD 00000
00001 AND NOT 00001
00002 OR 00002
00003 OR NOT 00003
00004 OUT 24600
00005 LD 24600
00006 AND 00004
00007 AND NOT 00005
00008 OUT 00100
00009 LD 24600
00010 OR NOT 00004
00011 AND 00005
00012 OUT 00101
00013 LD NOT 24600
00014 OR 00006
00015 OR 00007
00016 OUT 00102

Differentiated Conditions Work bits can also be used if differential treatment is necessary for some, but not
all, of the conditions required for execution of an instruction. In this example, IR
00100 must be left ON continuously as long as IR 00001 is ON and both IR
00002 and IR 00003 are OFF, or as long as IR 00004 is ON and IR 00005 is OFF.
It must be turned ONfor only one cycleeach time IR 00000 turns ON (unless one
of the preceding conditions is keeping it ON continuously).

This action is easily programmed by using IR 22500 as a work bit as the operand
of theDIFFERENTIATE UP instruction (DIFU(13)). When IR 00000 turns ON, IR
22500 will be turned ON for one cycle and then be turned OFF the next cycle by
DIFU(13). Assuming the other conditions controlling IR 00100 are not keeping it
ON, the work bit IR 22500 will turn IR 00100 ON for one cycle only.

22500

DIFU(13) 22500

00000

00001 00002 00003

00004 00005

00100

Address Instruction Operands

00000 LD 00000
00001 DIFU(13) 22500
00002 LD 22500
00003 LD 00001
00004 AND NOT 00002
00005 AND NOT 00003
00006 OR LD ---
00007 LD 00004
00008 AND NOT 00005
00009 OR LD ---
00010 OUT 00100

W orkBits Section 4-9

91

4-10 Programming Precautions
The number of conditions that can be used in series or parallel is unlimited as
long as the memory capacity of the PC is not exceeded. Therefore, use as many
conditions as required to draw a clear diagram. Although very complicated dia-
grams can be drawn with instruction lines, there must not be any conditions on
lines running vertically between two other instruction lines. Diagram A shown
below, for example, is not possible, and should be drawn as diagram B. Mne-
monic code is provided for diagram B only; coding diagram A would be impossi-
ble.

00003
Instruction 2

Instruction 1

0000200000

00001

00004

Diagram A

Instruction 1

00004

00003

00000

00001

Diagram B

00002

Instruction 2

0000400000

00001

Address Instruction Operands

00000 LD 00001
00001 AND 00004
00002 OR 00000
00003 AND 00002
00004 Instruction 1
00005 LD 00000
00006 AND 00004
00007 OR 00001
00008 AND NOT 00003
00009 Instruction 2

The number of times any particular bit can be assigned to conditions is not lim-
ited, so use them as many times as required to simplify your program. Often,
complicated programs are the result of attempts to reduce the number of times a
bit is used.
Except for instructions for which conditions are not allowed (e.g., INTERLOCK
CLEAR and JUMP END, see below), every instruction line must also have at
least one condition on it to determine the execution condition for the instruction
at the right. Again, diagram A , below, must be drawn as diagram B. If an instruc-
tion must be continuously executed (e.g., if an output must always be kept ON
while the program is being executed), the Always ON Flag (SR 25313) in the SR
area can be used.

Instruction
25313

Instruction

Diagram A: Incorrect

Diagram B

Address Instruction Operands

00000 LD 25313
00001 Instruction

There are a few exceptions to this rule, including the INTERLOCK CLEAR,
JUMP END, and step instructions. Each of these instructions is used as the sec-
ond of a pair of instructions and is controlled by the execution condition of the

Program m ingPrecautions Section 4-10

92

first of the pair. Conditions should not beplaced on the instruction lines leading to
these instructions. Refer to Section 5 Instruction Set for details.
When drawing ladder diagrams, it is important to keep in mind the number of
instructions that will be required to input it. In diagram A, below, an OR LOAD
instruction will be required to combine the top and bottom instruction lines. This
can be avoided by redrawing as shown indiagram B so that no ANDLOAD or OR
LOAD instructions are required. Refer to 5-7-2 AND LOAD and OR LOAD for
more details and Section 7 Program Monitoring and Execution for further exam-
ples.

00000

00001 00207

00207

00001

00000

00207
00207

Diagram A

Diagram B

Address Instruction Operands

00000 LD 00000
00001 LD 00001
00002 AND 00207
00003 OR LD ---
00004 OUT 00207

Address Instruction Operands

00000 LD 00001
00001 AND 00207
00002 OR 00000
00003 OUT 002

4-11 Program Execution
When program execution is started, the CPU cycles the program from top tobot-
tom, checking all conditions and executing all instructions accordingly as it
moves down the bus bar. It is important that instructions be placed in the proper
order so that, for example, the desired data is moved to a word before that word
is used as the operand for an instruction. Remember that an instruction line is
completed to the terminal instruction at the right before executing an instruction
lines branching from the first instruction line to other terminal instructions at the
right.
Program execution is only one of the tasks carried out by the CPU as part of the
cycle time. Refer to Section 6 Program Execution Timing for details.

Program Execution Section 4-11

93

SECTION 5
Instruction Set

TheC200H PC hasalargeprogram m inginstructionsetthatallowsforeasyprogram m ingofcom plicatedcontrolprocesses.
Thissectionexplainsinstructionsindividuallyandprovidestheladderdiagram sym bol,dataareas,andflagsusedwitheach.

Them anyinstructionsprovidedbytheC200H areorganizedinthefollowingsubsectionsbyinstructiongroup.Thesegroups
includeLadderDiagram Instructions,BitControlInstructions,Tim erandCounterInstructions,DataShiftingInstructions,
DataM ovem entInstructions,DataCom parisonInstructions,DataConversionInstructions,BCD CalculationInstructions,
BinaryCalculationInstructions,LogicInstructions,Subroutines,SpecialInstructions,andNetworkInstructions.

Som einstructions,suchasTim erandCounterinstructions,areusedtocontrolexecutionofotherinstructions,e.g.,aTIM
Com pletionFlagm ightbeusedtoturnON abitwhenthetim eperiodsetforthetim erhasexpired.Althoughtheseother
instructionsareoftenusedtocontroloutputbitsthroughtheOutputinstruction,theycanbeusedtocontrolexecutionofother
instructionsaswell.TheOutputinstructionsusedinexam plesinthism anualcanthereforegenerallybereplacedbyother
instructionstom odifytheprogram forspecificapplicationsotherthancontrollingoutputbitsdirectly.

5-1 Notation 95..
5-2 InstructionForm at 95..
5-3 DataAreas,DefinerValues,andFlags 95...

5-4 DifferentiatedInstructions 96..
5-5 CodingRight-handInstructions 97..
5-6 InstructionSetLists 100...

5-6-1 FunctionCodes 100..
5-6-2 AlphabeticListbyM nem onic 101..

5-7 LadderDiagram Instructions 102..
5-7-1 LOAD,LOAD NOT,AND,AND NOT,OR,andOR NOT 102................................
5-7-2 AND LOAD andOR LOAD 103...

5-8 BitControlInstructions 103..
5-8-1 OUTPUT andOUTPUT NOT -OUT andOUT NOT 104....................................

5-8-2 DIFFERENTIATE UP andDOW N -DIFU(13)andDIFD(14) 104.............................
5-8-3 KEEP -KEEP(11) 106...

5-9 INTERLOCK andINTERLOCK CLEAR -IL(02)andILC(03) 108.....................................
5-10 JUM P andJUM P END -JM P(04)andJM E(05) 110...

5-11 END -END(01) 111...
5-12 NO OPERATION -NOP(00) 111..
5-13 Tim erandCounterInstructions 111..

5-13-1 TIM ER -TIM 112...
5-13-2 HIGH-SPEED TIM ER -TIM H(15) 116..

5-13-3 COUNTER -CNT 116...
5-13-4 REVERSIBLE COUNTER -CNTR(12) 119..

5-14 DataShifting 121..
5-14-1 SHIFT REGISTER -SFT(10) 121..
5-14-2 REVERSIBLE SHIFT REGISTER -SFTR(84) 123...

5-14-3 ARITHM ETIC SHIFT LEFT -ASL(25) 125..
5-14-4 ARITHM ETIC SHIFT RIGHT -ASR(26) 125...
5-14-5 ROTATE LEFT -ROL(27) 125...
5-14-6 ROTATE RIGHT -ROR(28) 126...

5-14-7 ONE DIGIT SHIFT LEFT -SLD(74) 126..
5-14-8 ONE DIGIT SHIFT RIGHT -SRD(75) 127...
5-14-9 W ORD SHIFT -W SFT(16) 128..
5-14-10 REVERSIBLE W ORD SHIFT -RW S(17) 128...

5-15 DataM ovem ent 129..

5-15-1 M OVE -M OV(21) 130...
5-15-2 M OVE NOT -M VN(22) 130..
5-15-3 COLUM N-TO-W ORD -CTW (63) 131..
5-15-4 W ORD-TO-COLUM N -W TC(64) 132..
5-15-5 BLOCK SET -BSET(71) 133..

5-15-6 BLOCK TRANSFER -XFER(70) 134...
5-15-7 DATA EXCHANGE -XCHG(73) 135...
5-15-8 SINGLE W ORD DISTRIBUTE -DIST(80) 135...
5-15-9 DATA COLLECT -COLL(81) 136..

5-15-10 M OVE BIT -M OVB(82) 136..
5-15-11 M OVE DIGIT -M OVD(83) 137...

94

5-16 DataCom parison 138...
5-16-1 M ULTI-W ORD COM PARE -M CM P(19) 138...

5-16-2 COM PARE -CM P(20) 139..
5-16-3 DOUBLE COM PARE -CM PL(60) 141..
5-16-4 BLOCK COM PARE -BCM P(68) 143...

5-16-5 TABLE COM PARE -TCM P(85) 144..
5-17 DataConversion 146..

5-17-1 BCD-TO-BINARY -BIN(23) 146..

5-17-2 DOUBLE BCD-TO-DOUBLE BINARY -BINL(58) 146....................................
5-17-3 BINARY-TO-BCD -BCD(24) 147..
5-17-4 DOUBLE BINARY-TO-DOUBLE BCD -BCDL(59) 148....................................

5-17-5 HOURS-TO-SECONDS -HTS(65) 148..
5-17-6 SECONDS-TO-HOURS -STH(66) 149..
5-17-7 4-TO-16DECODER -M LPX(76) 150...

5-17-8 16-TO-4ENCODER -DM PX(77) 152...
5-17-9 7-SEGM ENT DECODER -SDEC(78) 154...
5-17-10 ASCIICONVERT -ASC(86) 157..

5-18 BCD Calculations 158...
5-18-1 INCREM ENT -INC(38) 159..
5-18-2 DECREM ENT -DEC(39) 159...

5-18-3 SET CARRY -STC(40) 159...
5-18-4 CLEAR CARRY -CLC(41) 159..
5-18-5 BCD ADD -ADD(30) 160..

5-18-6 DOUBLE BCD ADD -ADDL(54) 161..
5-18-7 BCD SUBTRACT -SUB(31) 162..
5-18-8 DOUBLE BCD SUBTRACT -SUBL(55) 164...

5-18-9 BCD M ULTIPLY -M UL(32) 165...
5-18-10 DOUBLE BCD M ULTIPLY -M ULL(56) 166...
5-18-11 BCD DIVIDE -DIV(33) 167..

5-18-12 DOUBLE BCD DIVIDE -DIVL(57) 168...
5-18-13 FLOATING POINT DIVIDE -FDIV(79) 169...
5-18-14 SQUARE ROOT -ROOT(72) 172..

5-19 BinaryCalculations 174...
5-19-1 BINARY ADD -ADB(50) 174...
5-19-2 BINARY SUBTRACT -SBB(51) 176...

5-19-3 BINARY M ULTIPLY -M LB(52) 178...
5-19-4 BINARY DIVIDE -DVB(53) 179..

5-20 LogicInstructions 179..

5-20-1 COM PLEM ENT -COM (29) 179...
5-20-2 LOGICAL AND -ANDW (34) 180...
5-20-3 LOGICAL OR -ORW (35) 180...

5-20-4 EXCLUSIVE OR -XORW (36) 181...
5-20-5 EXCLUSIVE NOR -XNRW (37) 182..

5-21 SubroutinesandInterruptControl 182..

5-21-1 Overview 182..
5-21-2 SUBROUTINE DEFINE andRETURN -SBN(92)/RET(93) 183..............................
5-21-3 SUBROUTINE ENTER -SBS(91) 183..

5-21-4 INTERRUPT CONTROL -INT(89) 185...
5-22 StepInstructions 188..

5-22-1 STEP DEFINE andSTEP START-STEP(08)/SNXT(09) 188..................................

5-23 SpecialInstructions 197...
5-23-1 FAILURE ALARM -FAL(06)andSEVERE FAILURE ALARM -FALS(07) 197.................
5-23-2 CYCLE TIM E -SCAN(18) 198..

5-23-3 M ESSAGE DISPLAY -M SG(46) 198...
5-23-4 LONG M ESSAGE -LM SG(47) 200...
5-23-5 TERM INAL M ODE -TERM (48) 200...

5-23-6 SET SYSTEM -SYS(49) 201..
5-23-7 BIT COUNTER -BCNT(67) 202...
5-23-8 VALUE CALCULATE -VCAL(69) 202...

5-23-9 W ATCHDOG TIM ER REFRESH -W DT(94) 205..
5-23-10 I/O REFRESH -IORF(97) 205...
5-23-11 GROUP-2HIGH-DENSITY I/O REFRESH -M PRF(61) 206.................................

5-24 NetworkInstructions 207..
5-24-1 NETW ORK SEND -SEND(90) 207..
5-24-2 NETW ORK RECEIVE -RECV(98) 208...

5-24-3 AboutNetworkCom m unications 210..

!

95

5-1 Notation
In the remainder of this manual, all instructions will be referred to by their mne-
monics. For example, the Output instruction will be called OUT; the AND Load
instruction, AND LD. If you’re not sure of the instruction a mnemonic is used for,
refer to Appendix B Programming Instructions.
If an instruction is assigned a function code, it will be given in parentheses after
the mnemonic. These function codes, which are 2-digit decimal numbers, are
used to input most instructions into the CPU and are described briefly below and
in more detail in 4-7 Inputting, Modifying, and Checking the Program. A table of
instructions listed in order of function codes, is also provided in Appendix B.
An @ before a mnemonic indicates the differentiated version of that instruction.
Differentiated instructions are explained in 5-4 Differentiated Instructions.

5-2 Instruction Format
Most instructions have at least one or more operands associated with them. Op-
erands indicate or provide the data on which an instruction is to be performed.
These are sometimes input as the actual numeric values (i.e., as constants), but
are usually the addresses of data area words or bits that contain the data to be
used. A bit whose address is designated as an operand is called an operand bit;
a word whose address is designated as an operand is called anoperand word. In
some instructions, the word address designated in an instruction indicates the
first of multiple words containing the desired data.
Each instruction requires one or more words in Program Memory. The first word
is the instruction word, which specifies the instruction and contains any definers
(described below) or operand bits required by the instruction. Other operands
required by the instruction are contained in following words, one operand per
word. Some instructions require up to four words.
A definer is an operand associated with an instruction and contained in the same
word as the instruction itself. These operands define the instruction rather than
telling what data it is to use. Examples of definers are TC numbers, which are
used in timer and counter instructions to create timers and counters, as well as
jump numbers (which define which Jump instruction is paired with which Jump
End instruction). Bit operands are also contained in the same word as the in-
struction itself, although these are not considered definers.

5-3 Data Areas, Definer Values, and Flags
In this section, each instruction description includes its ladder diagram symbol,
the data areas that can be used by its operands, and the values that can be used
as definers. Details for the data areas are also specified by the operand names
and the type of data required for each operand (i.e., word or bit and, for words,
hexadecimal or BCD).
Not all addresses in the specified data areas arenecessarily allowed for anoper-
and, e.g., if an operand requires two words, the last word in a data area cannot
be designated as the first word of the operand because all words for a single op-
erand must be within the same data area. Other specific limitations are given ina
Limitations subsection. Refer to Section 3 Memory Areas for addressing con-
ventions and the addresses of flags and control bits.

Caution The IR and SR areas are considered as separate data areas. If an operand has
access to one area, it doesn’t necessarily mean that the same operand will have
access to the other area. The border between the IR and SR areas can, howev-
er, be crossed for a single operand, i.e., the last bit in the IR area may be speci-
fied for an operand that requires more than one word as long as the SR area is
also allowed for that operand.

DataAreas,DefinerValues,andFlags Section 5-3

96

The Flags subsection lists flags that are affected by execution of an instruction.
These flags include the following SR area flags.

Abbreviation Name Bit

ER Instruction Execution Error Flag 25503

CY Carry Flag 25504

GR Greater Than Flag 25505

EQ Equals Flag 25506

LE Less Than Flag 25507

ER is the flag most commonly used for monitoring an instruction’s execution.
When ER goes ON, it indicates that an error has occurred in attempting to exe-
cute the current instruction. The Flags subsection of each instruction lists possi-
ble reasons for ER being ON. ER will turn ON if operands are not entered cor-
rectly. Instructions are not executed when ER is ON. A table of instructions and
the flags they affect is provided in Appendix D Error and Arithmetic Flag Opera-
tion.

When the DM area is specified for an operand, an indirect address can be used.
Indirect DM addressing is specified by placing an asterisk before the DM: *DM.
When an indirect DM address is specified, the designated DM word will contain
the address of the DM word that contains the data that will be used as the oper-
and of the instruction. If, for example, *DM 0001 was designated as the first op-
erand and LR 00 as the second operand of MOV(21), the contents of DM 0001
was 1111, and DM 1111 contained 5555, the value 5555 would be moved to LR
00.

MOV(21)

*DM 0001

LR 00

Word Content
DM 0000 4C59
DM 0001 1111
DM 0002 F35A

DM 1111 5555
DM 1113 2506
DM 1114 D541

5555 moved
to LR 00.

Indicates
DM 1111.

Indirect
address

When using indirect addressing, theaddress of the desiredword must be inBCD
and it must specify a word within the DM area. In the above example, the content
of *DM 0000 would have to be in BCD between 0000 and 1999.

Although data area addresses are most often given as operands, many oper-
ands and all definers are input as constants. The available value range for a
given definer or operand depends on the particular instruction that uses it. Con-
stants must also be entered in the form required by the instruction, i.e., in BCDor
in hexadecimal.

5-4 Differentiated Instructions
Most instructions are provided in both differentiated and non-differentiated
forms. Differentiated instructions are distinguished by an @ in front of the in-
struction mnemonic.
A non-differentiated instruction is executed each time it is cycled as long as its
execution condition is ON. A differentiated instruction is executed only once af-
ter its execution condition goes from OFF to ON. If the execution condition has
not changed or has changed from ON to OFF since the last time the instruction
was cycled, the instruction will not be executed. The following two examples

Indirect Addressing

Designating Constants

DifferentiatedInstructions Section 5-4

97

show how this works with MOV(21) and @MOV(21), which are used to move the
data in the address designated by the first operand to the address designated by
the second operand.

00000

MOV(21)

HR 10

DM 0000Diagram A

00000

@MOV(21)

HR 10

DM 0000Diagram B

Address Instruction Operands

Address Instruction Operands

00000 LD 00000
00001 MOV(21)

HR 10
DM 0000

00000 LD 00000
00001 @MOV(21)

HR 10
DM 0000

In diagram A, the non-differentiated MOV(21) will move the content of HR 10 to
DM 0000 whenever it is cycled with 00000. If the cycle time is 80 ms and 00000
remains ON for 2.0 seconds, this move operation will be performed 25 times and
only the last value moved to DM 0000 will be preserved there.
In diagram B, the differentiated @MOV(21) will move the content of HR10 toDM
0000 only once after 00000 goes ON. Even if 00000 remains ON for 2.0 seconds
with the same 80 ms cycle time, the move operation will be executed only once
during the first cycle in which 00000 has changed from OFF to ON. Because the
content of HR 10 could very well change during the 2 seconds while 00000 is
ON, the final content of DM 0000 after the 2 seconds could be different depend-
ing on whether MOV(21) or @MOV(21) was used.
All operands, ladder diagram symbols, and other specifications for instructions
are the same regardless of whether the differentiated or non-differentiated form
of an instruction is used. When inputting, the same function codes are alsoused,
but NOT is input after the function code to designate the differentiated form of an
instruction. Most, but not all, instructions have differentiated forms.
Refer to 5-9 INTERLOCK and INTERLOCK CLEAR -- IL(02) and IL(03) for the
effects of interlocks on differentiated instructions.
The C200H also provides differentiation instructions: DIFU(13) and DIFD(14).
DIFU(13) operates the same as a differentiated instruction, but is used to turn
ON a bit for one cycle. DIFD(14) also turns ON a bit for one cycle, but does it
when the execution condition has changed from ON to OFF. Refer to 5-8-2 DIF-
FERENTIATE UP and DOWN - DIFU(13) and DIFD(14) for details.

Note If SR25313 (Always ON Flag) or SR25315 (First Cycle Bit) are usedas input bits
for differentiated instructions, because there is no rising edge, the differentiated
instruction will not be executed. Do not use SR 25313 or SR 25315 as input bits
for differentiated instructions.

5-5 Coding Right-hand Instructions
Writing mnemonic code for ladder instructions is described in Section 4 Writing
and Inputting the Program. Converting the information in the ladder diagram
symbol for all other instructions follows the same pattern, as described below,
and is not specified for each instruction individually.
The first word of any instruction defines the instruction and provides any defin-
ers. If the instruction requires only a signal bit operand with no definer, the bit
operand is also placed on the same line as themnemonic. All other operands are
placed on lines after the instruction line, one operand per line and in the same
order as they appear in the ladder symbol for the instruction.

CodingRight-handInstructions Section 5-5

98

The address and instruction columns of the mnemonic code table are filled in for
the instruction word only. For all other lines, the left two columns are left blank. If
the instruction requires no definer or bit operand, the data column is left blank for
first line. It is a good idea to cross through any blank data column spaces (for all
instruction words that do not require data) so that the data column can be quickly
cycled to see if any addresses have been left out.

If an IR or SR address is used in the data column, the left sideof thecolumn is left
blank. If any other data area is used, the data area abbreviation is placed on the
left side and the address is place on the right side. If a constant to be input, the
number symbol (#) is placed on the left side of the data column and the number
to be input is placed on the right side. Any numbers input as definers in the in-
struction word do not require the number symbol on the right side. TC bits, once
defined as a timer or counter, take a TIM (timer) or CNT (counter) prefix.

When coding an instruction that has a function code, be sure to write in the func-
tion code, which will be necessary when inputting the instruction via the Pro-
gramming Console. Also be sure to designate the differentiated instruction with
the @ symbol.

The following diagram and corresponding mnemonic code illustrates the points
described above.

Address Instruction Data

00000 LD 00000

00001 AND 00001

00002 OR 00002

00003 DIFU(13) 22500

00004 LD 00100

00005 AND NOT 00200

00006 LD 01001

00007 AND NOT 01002

00008 AND NOT LR 6300

00009 OR LD --

00010 AND 22500

00011 BCNT(67) --

0001

004

HR 00

00012 LD 00005

00013 TIM 000

0150

00014 LD TIM 000

00015 MOV(21) --

HR 00

LR 00

00016 LD HR 0015

00017 OUT NOT 00500

00100 00200

DIFU(13) 22500

00500

BCNT(67)

#0001

004

HR 00

MOV(21)

HR 00

LR 00

01001 01002 LR 6300

TIM 000

22500

00002

00005

HR 0015

00000 00001

TIM 000

#0150

If a right-hand instruction requires multiple instruction lines (such as KEEP(11)),
all of the lines for the instruction are entered before the right-hand instruction.
Each of the lines for the instruction is coded, starting with LD or LD NOT, to form

Multiple Instruction Lines

CodingRight-handInstructions Section 5-5

99

‘logic blocks’ that are combined by the right-hand instruction. An example of this
for SFT(10) is shown below.

I

P

R

SFT(10)

HR 00

HR 00

Address Instruction Data

00000 LD 00000

00001 AND 00001

00002 LD 00002

00003 LD 00100

00004 AND NOT 00200

00005 LD 01001

00006 AND NOT 01002

00007 AND NOT LR 6300

00008 OR LD --

00009 AND 22500

00010 SFT(10) --

HR 00

HR 00

00011 LD HR 0015

00012 OUT NOT 00500

00100 00200

00500

01001 01002 LR 6300

22500

00002

HR 0015

00000 00001

When you have finished coding the program, make sure you have placed
END(01) at the last address.

END(01)

CodingRight-handInstructions Section 5-5

Instruction SetLists Section 5-6

100

5-6 Instruction Set Lists
This section provides tables of the instructions available in the C200H. The first
table can be used to find instructions by function code. The second table can be
used to find instruction by mnemonic. In both tables, the @ symbol indicates in-
structions with differentiated variations.

5-6-1 Function Codes
The following table lists the instructions that have function codes. Each instruc-
tion is listed by mnemonic and by instruction name. Use the numbers in the left-
most column as the leftmost digit and the number in the column heading as the
rightmost digit of the function code.

Code Rightmost digit

0 1 2 3 4 5 6 7 8 9

0 NOP
NO
OPERATION

END
END

IL
INTERLOCK

ILC
INTERLOCK
CLEAR

JUMP
JUMP

JME
JUMP END

(@) FAL
FAILURE
ALARM AND
RESET

FALS
SEVERE
FAILURE
ALARM

STEP
STEP
DEFINE

SNXT
STEP START

1 SFT
SHIFT
REGISTER

KEEP
KEEP

CNTR
REVERS-
IBLE
COUNTER

DIFU
DIFFEREN-
TIATE UP

DIFD
DIFFEREN-
TIATE DOWN

TIMH
HIGH-
SPEED
TIMER

(@) WSFT
WORD
SHIFT

(@) RWS
REVERS-
IBLE WORD
SHIFT

(@) SCAN
CYCLE TIME

(@) MCMP
MULTI-
WORD
COMPARE

2 CMP
COMPARE

(@) MOV
MOVE

(@) MVN
MOVE NOT

(@) BIN
BCD TO
BINARY

(@) BCD
BINARY TO
BCD

(@) ASL
SHIFT LEFT

(@) ASR
SHIFT
RIGHT

(@) ROL
ROTATE
LEFT

(@) ROR
ROTATE
RIGHT

(@) COM
COMPLE-
MENT

3 (@) ADD
BCD ADD

(@) SUB
BCD
SUBTRACT

(@) MUL
BCD
MULTIPLY

(@) DIV
BCD
DIVIDE

(@) ANDW
LOGICAL
AND

(@) ORW
LOGICAL OR

(@) XORW
EXCLUSIVE
OR

(@) XNRW
EXCLUSIVE
NOR

(@) INC
INCREMENT

(@) DEC
DECRE-
MENT

4 (@) STC
SET CARRY

(@) CLC
CLEAR
CARRY

(@) MSG
MESSAGE
DISPLAY

(@) LMSG
LONG
MESSAGE

(@) TERM
TERMINAL
MODE

SYS
SET
SYSTEM

5 (@) ADB
BINARY ADD

(@) SBB
BINARY
SUBTRACT

(@) MLB
BINARY
MULTIPLY

(@) DVB
BINARY
DIVIDE

(@) ADDL
DOUBLE
BCD ADD

(@) SUBL
DOUBLE
BCD
SUBTRACT

(@) MULL
DOUBLE
BCD
MULTIPLY

(@) DIVL
DOUBLE
BCD
DIVIDE

(@) BINL
DOUBLE
BCD-TO-
DOUBLE
BINARY

(@) BCDL
DOUBLE
BINARY-TO-
DOUBLE
BCD

6 CMPL
DOUBLE
COMPARE

(@) MPRF
GROUP-2
HIGH-DEN-
SITY I/O RE-
FRESH

(@) CTW
COLUMN-
TO-WORD

(@) WTC
WORD-TO-
COLUMN

(@) HTS
HOURS-TO-
SECONDS

(@) STH
SECONDS-
TO-HOURS

(@) BCNT
BIT
COUNTER

(@) BCMP
BLOCK
COMPARE

(@) VCAL
VALUE
CALCULATE

7 (@) XFER
BLOCK
TRANSFER

(@) BSET
BLOCK SET

(@) ROOT
SQUARE
ROOT

(@) XCHG
DATA
EXCHANGE

(@) SLD
ONE DIGIT
SHIFT LEFT

(@) SRD
ONE DIGIT
SHIFT
RIGHT

(@) MLPX
4-TO-16
DECODER

(@) DMPX
16-TO-4
ENCODER

(@) SDEC
7-SEGMENT
DECODER

(@) FDIV
FLOATING
POINT
DIVIDE

8 (@) DIST
SINGLE
WORD
DISTRIBUTE

(@) COLL
DATA
COLLECT

(@) MOVB
MOVE BIT

(@) MOVD
MOVE DIGIT

(@) SFTR
REVERS-
IBLE SHIFT
REGISTER

(@) TCMP
TABLE
COMPARE

(@) ASC
ASCII
CONVERT

(@) INT
INTERRUPT
CONTROL

9 (@) SEND
NETWORK
SEND

(@) SBS
SUBROU-
TINE
ENTRY

SBN
SUBROU-
TINE
DEFINE

RET
SUBROU-
TINE
RETURN

(@) WDT
WATCHDOG
TIMER
REFRESH

(@) IORF
I/O
REFRESH

(@) RECV
NETWORK
RECEIVE

Instruction SetLists Section 5-6

101

5-6-2 Alphabetic List by Mnemonic
Mnemonic Code Name

ADB (@) 50 BINARY ADD

ADD (@) 30 BCD ADD

ADDL (@) 54 DOUBLE BCD ADD

AND None AND

AND LD None AND LOAD

AND NOT None AND NOT

ANDW (@) 34 LOGICAL AND

ASC (@) 86 ASCII CONVERT

ASL (@) 25 ARITHMETIC SHIFT LEFT

ASR (@) 26 ARITHMETIC SHIFT RIGHT

BCD (@) 24 BINARY TO BCD

BCDL (@) 59 DOUBLE BINARY-TO-DOUBLE
BCD

BCMP (@) 68 BLOCK COMPARE

BCNT (@) 67 BIT COUNTER

BIN (@) 23 BCD-TO-BINARY

BINL (@) 58 DOUBLE BCD-TO-DOUBLE
BINARY

BSET (@) 71 BLOCK SET

CLC (@) 41 CLEAR CARRY

CMP 20 COMPARE

CMPL 60 DOUBLE COMPARE

CNT None COUNTER

CNTR 12 REVERSIBLE COUNTER

COLL (@) 81 DATA COLLECT

COM (@) 29 COMPLEMENT

CTW (@) 63 COLUMN-TO-WORD

DEC (@) 39 DECREMENT BCD

DIFD 14 DIFFERENTIATE DOWN

DIFU 13 DIFFERENTIATE UP

DIST (@) 80 SINGLE WORD DISTRIBUTE

DIV (@) 33 BCD DIVIDE

DIVL (@) 57 DOUBLE BCD DIVIDE

DMPX (@) 77 16-TO-4 ENCODER

DVB (@) 53 BINARY DIVIDE

END 01 END

FAL (@) 06 FAILURE ALARM

FALS 07 SEVERE FAILURE ALARM

FDIV (@) 79 FLOATING POINT DIVIDE

HTS (@) 65 HOURS-TO-SECONDS

IL 02 INTERLOCK

ILC 03 INTERLOCK CLEAR

Mnemonic Code Name

INC (@) 38 INCREMENT

INT (@) 89 INTERRUPT CONTROL

IORF (@) 97 I/O REFRESH

JME 05 JUMP END

JMP 04 JUMP

KEEP 11 KEEP

LD None LOAD

LD NOT None LOAD NOT

LMSG (@) 47 LONG MESSAGE

MCMP (@) 19 MULTI-WORD COMPARE

MLB (@) 52 BINARY MULTIPLY

MLPX (@) 76 4-TO-16 DECODER

MOV (@) 21 MOVE

MOVB (@) 82 MOVE BIT

MOVD (@) 83 MOVE DIGIT

MPRF (@) 61 GROUP-2 HIGH-DENSITY I/O
REFRESH

MSG (@) 46 MESSAGE

MUL (@) 32 BCD MULTIPLY

MULL (@) 56 DOUBLE BCD MULTIPLY

MVN (@) 22 MOVE NOT

NOP 00 NO OPERATION

OR None OR

OR LOAD None OR LOAD

OR NOT None OR NOT

ORW (@) 35 LOGICAL OR

OUT None OUTPUT

OUT NOT None OUTPUT NOT

RECV (@) 98 NETWORK RECEIVE

RET 93 SUBROUTINE RETURN

ROL (@) 27 ROTATE LEFT

ROOT (@) 72 SQUARE ROOT

ROR (@) 28 ROTATE RIGHT

RWS (@) 17 REVERSIBLE WORD SHIFT

SBB (@) 51 BINARY SUBTRACT

SBN 92 SUBROUTINE DEFINE

SBS (@) 91 SUBROUTINE ENTRY

SCAN (@) 18 CYCLE TIME

SDEC (@) 78 7-SEGMENT DECODER

SEND (@) 90 NETWORK SEND

SFT 10 SHIFT REGISTER

SFTR (@) 84 REVERSIBLE SHIFT REGISTER

102

Mnemonic Code Name

SLD (@) 74 ONE DIGIT SHIFT LEFT

SNXT 09 STEP START

SRD (@) 75 ONE DIGIT SHIFT RIGHT

STC (@) 40 SET CARRY

STEP 08 STEP DEFINE

STH (@) 66 SECONDS-TO-HOURS

SUB (@) 31 BCD SUBTRACT

SUBL (@) 55 DOUBLE BCD SUBTRACT

SYS 49 SET SYSTEM

TCMP (@) 85 TABLE COMPARE

TERM (@) 48 TERMINAL MODE

Mnemonic Code Name

TIM None TIMER

TIMH 15 HIGH-SPEED TIMER

VCAL (@) 69 VALUE CALCULATE

WDT (@) 94 WATCHDOG TIMER REFRESH

WSFT (@) 16 WORD SHIFT

WTC (@) 64 WORD-TO-COLUMN

XCHG (@) 73 DATA EXCHANGE

XFER (@) 70 BLOCK TRANSFER

XNRW (@) 37 EXCLUSIVE NOR

XORW (@) 36 EXCLUSIVE OR

5-7 Ladder Diagram Instructions
Ladder Diagram instructions include Ladder instructions and Logic Block
instructions and correspond to the conditions on the ladder diagram. Logic block
instructions are used to relate more complex parts.

5-7-1 LOAD, LOAD NOT, AND, AND NOT, OR, and OR NOT

B: Bit

IR, SR, AR, HR, TC, LR, TR

Ladder Symbols Operand Data Areas

LOAD -- LD
B

B: Bit

IR, SR, AR, HR, TC, LR
LOAD NOT -- LD NOT B

B: Bit

IR, SR, AR, HR, TC, LR
AND -- AND

B

B: Bit

IR, SR, AR, HR, TC, LR
AND NOT -- AND NOT

B

B: Bit

IR, SR, AR, HR, TC, LR
OR -- OR B

B: Bit

IR, SR, AR, HR, TC, LR
OR NOT -- OR NOT B

There is no limit to the number of any of these instructions, or restrictions in the
order in which they must be used, as long as the memory capacity of the PC is
not exceeded.

These six basic instructions correspond to the conditions on a ladder diagram.
As described in Section 4 Writing and Inputting the Program, the status of the
bits assigned to each instruction determines the execution conditions for all
other instructions. Each of these instructions and each bit address can be used
as many times as required. Each can be used in as many of these instructions as
required.
The status of the bit operand (B) assigned to LD or LD NOT determines the first
execution condition. AND takes the logical AND between the execution condi-

Limitations

Description

LadderDiagram Instructions Section 5-7

103

tion and the status of its bit operand; AND NOT, the logical AND between the
execution condition and the inverse of the status of its bit operand. OR takes the
logical OR between the execution condition and the status of its bit operand; OR
NOT, the logical OR between the execution condition and the inverse of the
status of its bit operand. The ladder symbol for loading TR bits is different from
that shown above. Refer to 4-4-3 Ladder Instructions for details.

Flags There are no flags affected by these instructions.

5-7-2 AND LOAD and OR LOAD

Ladder Symbol

AND LOAD -- AND LD
00002

00003

00000

00001

Ladder Symbol

OR LOAD -- OR LD
00000 00001

00002 00003

When instructions are combined into blocks that cannot be logically combined
using only OR and AND operations, AND LD and OR LD are used. Whereas
AND and OR operations logically combine a bit status and an execution condi-
tion, AND LD and OR LD logically combine two execution conditions, the current
one and the last unused one.

In order to draw ladder diagrams, it is not necessary to use AND LD and OR LD
instructions, nor are they necessary when inputting ladder diagrams directly, as
is possible from the GPC. They are required, however, to convert the program to
and input it in mnemonic form. The procedures for these, limitations for different
procedures, and examples are provided in 4-7 Inputting, Modifying, and Check-
ing the Program.

In order to reduce the number of programming instructions required, a basic un-
derstanding of logic block instructions is required. For an introduction to logic
blocks, refer to 4-4-6 Logic Block Instructions.

Flags There are no flags affected by these instructions.

5-8 Bit Control Instructions
There are five instructions that can be used generally to control individual bit
status. These are OUT, OUT NOT, DIFU(13), DIFD(14), and KEEP(11). These
instructions are used to turn bits ON and OFF in different ways.

Description

BitControlInstructions Section 5-8

104

5-8-1 OUTPUT and OUTPUT NOT -- OUT and OUT NOT

B: Bit

IR, SR, AR, HR, TC, LR, TR

Ladder Symbol Operand Data Areas
OUTPUT -- OUT

B

B: Bit

IR, SR, AR, HR, TC, LR

Ladder Symbol Operand Data Areas
OUTPUT NOT -- OUT NOT

B

Any output bit can generally be used in only one instruction that controls its sta-
tus. Refer to 3-3 IR Area for details.

OUT andOUT NOT are used to control the status of thedesignated bit according
to the execution condition.
OUT turns ON the designated bit for an ON execution condition, and turns OFF
the designatedbit for an OFF execution condition. With aTR bit, OUT appears at
a branching point rather than at the end of an instruction line. Refer to 4-7-7
Branching Instruction Lines for details.
OUT NOT turns ON the designated bit for a OFF execution condition, and turns
OFF the designated bit for an ON execution condition.
OUT andOUT NOT canbe used to control execution by turning ONand OFF bits
that are assigned to conditions on the ladder diagram, thus determining execu-
tion conditions for other instructions. This is particularly helpful and allows a
complex set of conditions to be used to control the status of a single work bit, and
then that work bit can be used to control other instructions.
The length of time that a bit is ON or OFF can be controlled by combining the
OUT or OUT NOT with TIM. Refer to Examples under 5-13-1 TIMER -- TIM for
details.

Flags There are no flags affected by these instructions.

5-8-2 DIFFERENTIATE UP and DOWN -- DIFU(13) and DIFD(14)

B: Bit

IR, AR, HR, LR

Ladder Symbols Operand Data Areas

DIFU(13) B

B: Bit

IR, AR, HR, LR
DIFD(14) B

Any output bit can generally be used in only one instruction that controls its sta-
tus. Refer to 3-3 IR Area for details.

DIFU(13) and DIFD(14) are used to turn the designated bit ON for one cycle
only.
Whenever executed, DIFU(13) compares its current executionwith theprevious
execution condition. If the previous execution condition was OFF and the cur-
rent one is ON, DIFU(13) will turn ON the designated bit. If the previous execu-

Limitations

Description

Limitations

Description

BitControlInstructions Section 5-8

105

tion condition was ON and the current execution condition is either ON or OFF,
DIFU(13) will either turn the designated bit OFF or leave it OFF (i.e., if the desig-
nated bit is already OFF). The designated bit will thus never be ON for longer
than one cycle, assuming it is executed each cycle (see Precautions, below).

Whenever executed, DIFD(14) compares its current executionwith theprevious
execution condition. If the previous execution condition was ON and the current
one is OFF, DIFD(14) will turn ON the designated bit. If the previous execution
condition was OFF and the current execution condition is either ON or OFF,
DIFD(14) will either turn the designated bit OFF or leave it OFF. The designated
bit will thus never be ON for longer than one cycle, assuming it is executed each
cycle (see Precautions, below).

These instructions are used when differentiated instructions (i.e., those prefixed
with an @) are not available and single-cycle execution of a particular instruction
is desired. They can also be used with non-differentiated forms of instructions
that have differentiated forms when their use will simplify programming. Exam-
ples of these are shown below.

Flags There are no flags affected by these instructions.

DIFU(13) and DIFD(14) operation can be uncertain when the instructions are
programmed between IL and ILC, between JMP and JME, or in subroutines. Re-
fer to 5-9 INTERLOCK and INTERLOCK CLEAR -- IL(02) and ILC(03), 5-10
JUMP and JUMP END -- JMP(04) and JME(05), and 5-21Subroutines and Inter-
rupt Control for details.

In diagram A, below, whenever CMP(20) is executed with an ON execution con-
dition it will compare the contents of the two operand words (HR 10 and DM
0000) and set the arithmetic flags (GR, EQ, and LE) accordingly. If the execution
condition remains ON, flag status may be changed each cycle if the content of
one or both operands change. Diagram B, however, is an example of how
DIFU(13) can be used to ensure that CMP(20) is executed only once each time
the desired execution condition goes ON.

00000

CMP(20)

HR 10

DM 0000Diagram A

22500

CMP(20)

HR 10

DM 0000Diagram B

DIFU(13) 22500

00000

Address Instruction Operands

00000 LD 00000
00001 CMP(20)

HR 10
DM 0000

Address Instruction Operands

00000 LD 00000
00001 DIFU(13) 22500
00002 LD 22500
00003 CMP(20)

HR 10
DM 0000

Although a differentiated form of MOV(21) is available, the following diagram
would be very complicated to draw using it because only one of the conditions

Precautions

Example 1:
When There is No
Differentiated Instruction

Example 2:
Simplifying Programming

BitControlInstructions Section 5-8

106

determining the execution condition for MOV(21) requires differentiated treat-
ment.

22500

MOV(21)

HR 10

DM 0000

DIFU(13) 22500

00000

00001 00002 00003

00004 00005

Address Instruction Operands

00000 LD 00000
00001 DIFU(13) 22500
00002 LD 22500
00003 LD 00001
00004 AND NOT 00002
00005 AND NOT 00003
00006 OR LD ---
00007 LD 00004
00008 AND NOT 00005
00009 OR LD ---
00010 MOV(21)

HR 10
DM 0000

5-8-3 KEEP -- KEEP(11)

B: Bit

IR, AR, HR, LR

Ladder Symbol Operand Data Areas
S

R

KEEP(11)

B

Any output bit can generally be used in only one instruction that controls its sta-
tus. Refer to 3-3 IR Area for details.

KEEP(11) is used to maintain the status of the designated bit based on two exe-
cution conditions. These execution conditions are labeled S and R. S is the set
input; R, the reset input. KEEP(11) operates like a latching relay that is set by S
and reset by R.

When S turns ON, the designated bit will go ON and stay ON until reset, regard-
less of whether S stays ON or goes OFF. When R turns ON, the designated bit
will go OFF and stay OFF until reset, regardless of whether R stays ON or goes
OFF. The relationship between execution conditions and KEEP(11) bit status is
shown below.

S execution condition

R execution condition

Status of B

KEEP(11) operates like the self-maintainingbit described in 4-8-3Self-maintain-
ing Bits. The following two diagrams would function identically, though the one

Limitations

Description

BitControlInstructions Section 5-8

107

using KEEP(11) requires one less instruction to program and would maintain
status even in an interlocked program section.

00002 00003

00500

00002

00003

00500

S

R

KEEP(11)

B

Address Instruction Operands

Address Instruction Operands

00000 LD 00002
00001 OR 00500
00002 AND NOT 00003
00003 OUT 00500

00000 LD 00002
00001 LD 00003
00002 KEEP(11) 00500

Flags There are no flags affected by this instruction.

Exercise caution when using a KEEP reset line that is controlled by an external
normally closed device. Never use an input bit in an inverse condition on the re-
set (R) for KEEP(11) when the input device uses an AC power supply. The delay
in shutting down the PC’s DC power supply (relative to the AC power supply to
the input device) can cause the designated bit of KEEP(11) to be reset. This situ-
ation is shown below.

A

Input Unit

A

NEVER

S

R

KEEP(11)

B

Bits used in KEEP are not reset in interlocks. Refer to the 5-9 INTERLOCK -- and
INTERLOCK CLEAR IL(02) and ILC(03) for details.

If a HR bit or an AR bit is used, bit status will be retained even during a power
interruption. KEEP(11) can thus be used to program bits that will maintain status
after restarting the PC following a power interruption. An example of this that can
be used to produce a warning display following a system shutdown for an emer-
gency situation is shown below. Bits 00002, 00003, and 00004 would be turned
ON to indicate some type of error. Bit 00005 would be turned ON to reset the
warning display. HR 0000, which is turned ON when any one of the three bits

Precautions

Example

BitControlInstructions Section 5-8

108

indicates an emergency situation, is used to turn ON the warning indicator
through 00500.

HR 0000
00500

00002

00003

00004

00005
Reset input

Indicates
emergency
situation

Activates
warning
display

S

R

KEEP(11)

B

Address Instruction Operands

00000 LD 00002
00001 OR 00003
00002 OR 00004
00003 LD 00005
00004 KEEP(11) HR 0000
00005 LD HR 0000
00006 OUT 00500

KEEP(11) can also be combined with TIM to produce delays in turning bits ON
and OFF. Refer to 5-13-1 TIMER -- TIM for details.

5-9 INTERLOCK and INTERLOCK CLEAR -- IL(02) and ILC(03)

Ladder Symbol IL(02)

Ladder Symbol ILC(03)

IL(02) is always used in conjunction with ILC(03) to create interlocks. Interlocks
are used to enable branching in the same way as can be achieved with TR bits,
but treatment of instructions between IL(02) and ILC(03) differs from that with
TR bits when the execution condition for IL(02) is OFF. If the execution condition
of IL(02) is ON, the program will be executed as written, with an ON execution
condition used to start each instruction line from the point where IL(02) is located
through the next ILC(03). Refer to 4-7-7 Branching Instruction Lines for basic
descriptions of both methods.
If the execution condition for IL(02) is OFF, the interlocked section between
IL(02) and ILC(03) will be treated as shown in the following table:

Instruction Treatment

OUT and OUT NOT Designated bit turned OFF.

TIM and TIMH(15) Reset.

CNT, CNTR(12) PV maintained.

KEEP(11) Bit status maintained.

DIFU(13) and DIFD(14) Not executed (see below).

All others Not executed.

IL(02) and ILC(03) do not necessarily have to be used in pairs. IL(02) can be
used several times in a row, with each IL(02) creating an interlocked section
through the next ILC(03). ILC(03) cannot be used unless there is at least one
IL(02) between it and any previous ILC(03).

Changes in the execution condition for a DIFU(13) or DIFD(14) are not recorded
if the DIFU(13) or DIFD(14) is in an interlocked section and the execution condi-
tion for the IL(02) is OFF. When DIFU(13) or DIFD(14) is execution in an inter-
locked section immediately after the execution condition for the IL(02) has gone
ON, the execution condition for the DIFU(13) or DIFD(14) will be compared to

Description

DIFU(13) and DIFD(14) in
Interlocks

INTERLOCK andINTERLOCK CLEAR -IL(02)andILC(03) Section 5-9

109

the execution condition that existed before the interlock became effective (i.e.,
before the interlock condition for IL(02) went OFF). The ladder diagram and bit
status changes for this are shown below. The interlock is in effect while 00000 is
OFF. Notice that 01000 is not turned ON at the point labeled A even though
00001 has turned OFF and then back ON.

00000

IL(02)

DIFU(13) 01000

ILC(03)

00001

00000

00001

ON

OFF

ON

OFF

01000
ON

OFF

A

Address Instruction Operands

00000 LD 00000
00001 IL(02)
00002 LD 00001
00003 DIFU(13) 01000
00004 ILC(03)

There must be an ILC(03) following any one or more IL(02).

Although as many IL(02) instructions as are necessary can be used with one
ILC(03), ILC(03) instructions cannot be used consecutively without at least one
IL(02) in between, i.e., nesting is not possible. Whenever a ILC(03) is executed,
all interlocks between the active ILC(03) and the preceding ILC(03) are cleared.
When more than one IL(02) is used with a single ILC(03), an error message will
appear when the program check is performed, but execution will proceed nor-
mally.

Flags There are no flags affected by these instructions.

The following diagram shows IL(02) being used twice with one ILC(03).

00000

00001

ILC(03)

IL(02)

00004

00005

00003

00002

IL(02)

00502

TIM 511

CP

R

CNT
001

IR 010
00100

001.5 s

TIM 511

#0015

Address Instruction Operands

00000 LD 00000
00001 IL(02)
00002 LD 00001
00003 TIM 511

0015
00004 LD 00002
00005 IL(02)
00006 LD 00003
00007 AND NOT 00004
00008 CNT 001

010
00009 LD 00005
00010 OUT 00502
00011 ILC(03)

When the execution condition for the first IL(02) is OFF, TIM 511 will be reset to
1.5 s, CNT 001 will not be changed, and 00502 will be turned OFF. When the
execution condition for the first IL(02) is ON and the execution condition for the
second IL(02) is OFF, TIM 511 will be executed according to the status of 00001,
CNT 001 will not be changed, and 00502 will be turned OFF. When theexecution
conditions for both the IL(02) are ON, the program will execute as written.

Precautions

Example

INTERLOCK andINTERLOCK CLEAR -IL(02)andILC(03) Section 5-9

110

5-10 JUMP and JUMP END -- JMP(04) and JME(05)

N: Jump number

(00 to 99)

Ladder Symbols Definer Values

JMP(04) N

N: Jump number

(00 to 99)
JME(05) N

Jump numbers 01 through 99 may be used only once in JMP(04) and once in
JME(05), i.e., each can be used todefine one jump only. Jump number 00 canbe
used as many times as desired.

JMP(04) is always used in conjunction with JME(05) to create jumps, i.e., to skip
from one point in a ladder diagram to another point. JMP(04) defines the point
from which the jump will be made; JME(05) defines the destination of the jump.
When the execution condition for JMP(04) in ON, no jump is made and the pro-
gram is executed consecutively as written. When the execution condition for
JMP(04) is OFF, a jump is made to the JME(05) with the same jump number and
the instruction following JME(05) is executed next.
If the jump number for JMP(04) is between 01 and 99, jumps, when made, will go
immediately to JME(05) with the same jump number without executing any in-
structions in between. The status of timers, counters, bits used in OUT, bits used
in OUT NOT, and all other status bits controlled by the instructions between
JMP(04) and JMP(05) will not be changed. Each of these jump numbers can be
used to define only one jump. Because all of instructions between JMP(04) and
JME(05) are skipped, jump numbers 01 through 99 can be used to reduce cycle
time.
If the jump number for JMP(04) is 00, the CPU will look for the next JME(05) with
a jump number of 00. To do so, it must search through the program, causing a
longer cycle time (when the execution condition is OFF) than for other jumps.
The status of timers, counters, bits used in OUT, bits used in OUT NOT, and all
other status controlled by the instructions between JMP(04) 00 and JMP(05) 00
will not be changed. jump number 00 can be used as many times as desired. A
jump from JMP(04) 00 will always go to the next JME(05) 00 in the program. It is
thus possible to use JMP(04) 00 consecutively and match them allwith thesame
JME(05) 00. It makes no sense, however, to use JME(05) 00 consecutively, be-
cause all jumps made to them will end at the first JME(05) 00.

Although DIFU(13) and DIFD(14) are designed to turn ON the designated bit for
one cycle, they will not necessarily do so when written between JMP(04) and
JMP (05). Once either DIFU(13) or DIFD(14) has turned ON a bit, it will remain
ON until the next time DIFU(13) or DIFD(14) is executed again. In normal pro-
gramming, this means the next cycle. In a jump, this means the next time the
jump from JMP(04) to JME(05) is not made, i.e., if a bit is turned ON by DIFU(13)
or DIFD(14) and then a jump is made in the next cycle so that DIFU(13) or
DIFD(14) are skipped, the designated bit will remain ON until the next time the
execution condition for the JMP(04) controlling the jump is ON.

When JMP(04) and JME(05) are not used in pairs, an error message will appear
when the program check is performed. Although this message also appears if
JMP(04) 00 and JME(05) 00 arenot used in pairs, the program will executeprop-
erly as written.

Flags There are no flags affected by these instructions.

Limitations

Description

DIFU(13) and DIFD(14) in
Jumps

Precautions

JUM P andJUM P END -JM P(04)andJM E(05) Section 5-10

111

Examples of jump programs are provided in 4-7-8 Jumps.

5-11 END -- END(01)

Ladder Symbol END(01)

END(01) is required as the last instruction in any program. If there are subrou-
tines, END(01) is placed after the last subroutine. No instruction written after
END(01) will be executed. END(01) can be placed anywhere in the program to
execute all instructions up to that point, as is sometimes done to debug a pro-
gram, but it must be removed to execute the remainder of the program.
If there is no END(01) in the program, no instructions will be executed and the
error message “NO END INST” will appear.

Flags END(01) turns OFF the ER, CY, GR, EQ, and LE flags.

5-12 NO OPERATION -- NOP(00)
NOP(00) is not generally required in programming and there is no ladder symbol
for it. When NOP(00) is found in a program, nothing is executedand theprogram
execution moves to the next instruction. When memory is cleared prior to pro-
gramming, NOP(00) is written at all addresses. NOP(00) can be input through
the 00 function code.

Flags There are no flags affected by NOP(00).

5-13 Timer and Counter Instructions
TIM and TIMH are decrementing ON-delay timer instructions which require aTC
number and a set value (SV).
CNT is a decrementing counter instruction and CNTR is a reversible counter in-
struction. Both require a TC number and a SV. Both are also connected to multi-
ple instruction lines which serve as an input signal(s) and a reset.
Any one TC number cannot be defined twice, i.e., once it has been used as the
definer in any of the timer or counter instructions, it cannot be used again. Once
defined, TC numbers can be used as many times as required as operands in
instructions other than timer and counter instructions.
TC numbers run from 000 through 511. No prefix is required when using a TC
number as a definer in a timer or counter instruction. Once defined as a timer, a
TC number can be prefixed with TIM for use as an operand in certain instruc-
tions. The TIM prefix is used regardless of the timer instruction that was used to
define the timer. Once defined as a counter, a TC number can be prefixed with
CNT for use as an operand in certain instructions. The CNT is also used regard-
less of the counter instruction that was used to define the counter.
TC numbers can be designated as operands that require either bit or word data.
When designated as an operand that requires bit data, the TC number accesses
a bit that functions as a ‘Completion Flag’ that indicates when the time/count has
expired, i.e., the bit, which is normally OFF, will turn ON when the designated SV
has expired. When designated as an operand that requires word data, the TC
number accesses a memory location that holds the present value (PV) of the
timer or counter. The PV of a timer or counter can thus be used as an operand in
CMP(20), or any other instruction for which the TC area is allowed. This is done
by designating the TC number used to define that timer or counter to access the
memory location that holds the PV.

Examples

Description

Description

Tim erandCounterInstructions Section 5-13

112

Note that “TIM 000” is used to designate the TIMER instruction defined with TC
number 000, to designate the Completion Flag for this timer, and to designate
the PV of this timer. The meaning of the term in context should be clear, i.e., the
first is always an instruction, the second is always a bit operand, and the third is
always a word operand. The same is true of all other TC numbers prefixed with
TIM or CNT.
An SV can be input as a constant or as a word address in a data area. If an IR
area word assigned to an Input Unit is designated as the word address, the Input
Unit can be wired so that the SV can be set externally through thumbwheel
switches or similar devices. Timers and counters wired in this way can only be
set externally during RUN or MONITOR mode. All SVs, including those set ex-
ternally, must be in BCD.

5-13-1 TIMER -- TIM

N: TC number

(000 through 511)
Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas

TIM N

SV

SV is between 000.0 and 999.9. The decimal point is not entered.
Although the SV can take values between 0000 and 9999 (BCD; omitting the
decimal point), if the SV = 0, the Completion Flag will turn ON as soon as the
executioncondition is satisfied. Also, since the timer accuracy is 0 to --0.1s, if the
SV = 1 and the accuracy is --0.1, the CompletionFlag will, again, turnON as soon
as the execution condition is satisfied. Therefore, it is recommended that only
values in the range 0002 to 9999 (BCD) are set for the SV.
Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.
TC 000 through TC 015 should not be used in TIM if they are required for
TIMH(15). Refer to 5-13-2 HIGH-SPEED TIMER -- TIMH(15) for details.

A timer is activated when its execution condition goes ON and is reset (to SV)
when the execution condition goes OFF. Once activated, TIM measures in units
of 0.1 second from the SV.
If the execution condition remains ON long enough for TIM to time down to zero,
the Completion Flag for the TC number used will turn ON and will remain ON
until TIM is reset (i.e., until its execution condition is goes OFF).
The following figure illustrates the relationship between the execution condition
for TIM and the Completion Flag assigned to it.

Execution condition

Completion Flag

ON

OFF

ON

OFF

SV SV

Timers in interlocked program sections are reset when the execution condition
for IL(02) is OFF. Power interruptions also reset timers. If a timer that is not reset

Limitations

Description

Precautions

Tim erandCounterInstructions Section 5-13

113

under these conditions is desired, SR area clock pulse bits can be counted to
produce timers using CNT. Refer to 5-13-3 COUNTER -- CNT for details.
Program execution will continue even if a non-BCD SV is used, but timing will not
be accurate.

Flags ER: SV is not in BCD.
Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

All of the following examples use OUT in diagrams that would generally be used
to control output bits in the IR area. There is no reason, however, why these dia-
grams cannot be modified to control execution of other instructions.

The following example shows two timers, one set with a constant and one set via
input word 005. Here, 00200 will be turned ON after 00000 goes ON and stays
ON for at least 15 seconds. When 00000 goes OFF, the timer will be reset and
00200 will be turned OFF. When 00001 goes ON, TIM 001 is started from the SV
provided through IR word 005. Bit 00201 is also turned ON when 00001 goes
ON. When the SV in 005 has expired, 00201 is turned OFF. This bit will also be
turned OFF when TIM 001 is reset, regardless of whether or not SV has expired.

00000

TIM 000

00001

TIM 001

00200

00201

015.0 s

TIM 000

#0150

TIM 001

IR 005 IR 005

Address Instruction Operands

00000 LD 00000
00001 TIM 000

0150
00002 LD TIM 000
00003 OUT 00200
00004 LD 00001
00005 TIM 001

005
00006 AND NOT TIM 001
00007 OUT 00200

There are two ways to achieve timers that operate for longer than 999.9 sec-
onds. One method is to program consecutive timers, with theCompletion Flagof
each timer used to activate the next timer. A simple example with two 900.0-sec-
ond (15-minute) timers combined to functionally form a 30-minute timer.

00000

TIM 001

TIM 002
00200

900.0 s

900.0 s

TIM 001

#9000

TIM 002

#9000

Address Instruction Operands

00000 LD 00000
00001 TIM 001

9000
00002 LD TIM 001
00003 TIM 002

9000
00004 LD TIM 002
00005 OUT 00200

In this example, 00200 will be turned ON 30 minutes after 00000 goes ON.
TIM can also be combined with CNT or CNT can be used to count SR area clock
pulse bits to produce longer timers. An example is provided in 5-13-3COUNTER
-- CNT.

TIM can be combined with KEEP(11) to delay turning a bit ON and OFF in refer-
ence to a desired execution condition. KEEP(11) is described in 5-8-3 KEEP --
KEEP(11).
To create delays, the Completion Flags for two TIM are used to determine the
execution conditions for setting and reset the bit designated for KEEP(11). The

Examples

Example 1:
Basic Application

Example 2:
Extended Timers

Example 3:
ON/OFF Delays

Tim erandCounterInstructions Section 5-13

114

bit whose manipulation is to be delayed is used in KEEP(11). Turning ON and
OFF the bit designated for KEEP(11) is thus delayed by the SV for the two TIM.
The two SV could naturally be the same if desired.

In the following example, 00500 would be turned ON 5.0 seconds after 00000
goes ON and then turned OFF 3.0 seconds after 00000 goes OFF. It is neces-
sary to use both 00500 and 00000 to determine the execution condition for TIM
002; 00000 in an inverse condition is necessary to reset TIM 002 when 00000
goes ON and 00500 is necessary to activate TIM 002 (when 00000 is OFF).

00000

00500 00000

TIM 001

TIM 002

005.0 s

003.0 s

00000

00500

5.0 s 3.0 s

TIM 001

#0050

S

R

KEEP(11)

00500

TIM 002

#0030

Address Instruction Operands

00000 LD 00000
00001 TIM 001

0050
00002 LD 00500
00003 AND NOT 00000
00004 TIM 002

0030
00005 LD TIM 001
00006 LD TIM 002
00007 KEEP(11) 00500

The length of time that a bit is kept ON or OFF can be controlled by combining
TIM with OUT or OUT NO. The following diagram demonstrates how this is pos-
sible. In this example, 00204 would remain ON for 1.5 seconds after 00000 goes
ON regardless of the time 00000 stays ON. This is achieved by using 01000 as a
self-maintaining bit activated by 00000 and turning ON 00204 through it. When
TIM 001 comes ON (i.e., when the SV of TIM 001 has expired), 00204 will be
turned OFF through TIM 001 (i.e., TIM 001 will turn ONwhich, as an inversecon-
dition, creates an OFF execution condition for OUT 00204).

01000 TIM 001

00000

01000

01000 TIM 001

01000

00204

001.5 s

00000

00204

1.5 s 1.5 s

TIM 001

#0015

Address Instruction Operands

00000 LD 01000
00001 AND NOT TIM 001
00002 OR 00000
00003 OUT 01000
00004 LD 01000
00005 TIM 001

0015
00006 LD 01000
00007 AND NOT TIM 001
00008 OUT 00204

Example 4:
One-Shot Bits

Tim erandCounterInstructions Section 5-13

115

The following one-shot timer may be used to save memory.

00000

TIM 00100100

00100

001.5 s

TIM 001

#0015

Address Instruction Operands

00000 LD 00000
00001 OR 00100
00002 TIM 001

0015
00003 AND NOT TIM 001
00004 OUT 00100

Bits can be programmed to turn ON and OFF at regular intervals while a desig-
nated execution condition is ON by using TIM twice. One TIM functions to turn
ON and OFF a specified bit, i.e., the Completion Flag of this TIM turns the speci-
fied bit ON and OFF. The other TIM functions to control the operation of the first
TIM, i.e., when the first TIM’s Completion Flag goes ON, the second TIM is
started and when the second TIM’s Completion Flag goes ON, the first TIM is
started.

00000 TIM 002

TIM 001

TIM 001
00205

00000

00205

1.5 s

1.0 s

1.5 s

1.0 s 1.5 s1.0 s

TIM 001

#0010

TIM 002

#0015

Address Instruction Operands

00000 LD 00000
00001 AND NOT TIM 002
00002 TIM 001

0010
00003 LD TIM 001
00004 TIM 002

0015
00005 LD TIM 001
00006 OUT 00205

A simpler but less flexible method of creating a flicker bit is to AND one of the SR
area clock pulse bits with the execution condition that is to be ON when the
flicker bit is operating. Although this method does not use TIM, it is included here
for comparison. This method is more limited because the ON and OFF times
must be the same and they depend on the clock pulse bits available in the SR
area.

In the following example the 1-second clock pulse is used (25502) so that 00206
would be turned ON and OFF every second, i.e., it would be ON for 0.5 seconds
and OFF for 0.5 seconds. Precise timing and the initial status of 00206 would
depend on the status of the clock pulse when 00000 goes ON.

00000 25502
00206

Address Instruction Operands

00000 LD 00000
00001 LD 25502
00002 OUT 00206

Example 5:
Flicker Bits

Tim erandCounterInstructions Section 5-13

116

5-13-2 HIGH-SPEED TIMER -- TIMH(15)

N: TC number

(000 through 015 preferred)
Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas

TIMH(15) N

SV

SV is between 00.00 and 99.99. (Although 00.00 and 00.01 may be set, 00.00
will disable the timer, i.e., turn ON the Completion Flag immediately, and 00.01 is
not reliably cycled.) The decimal point is not entered.
Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.
TC 000 through TC 047 must be used to ensure accuracy if the cycle time is
greater than 10 ms.

TIMH(15) operates in the same way as TIM except that TIMH measures in units
of 0.01 second.
The cycle time affects TIMH(15) accuracy if TC 016 through TC 511 are used. If
the cycle time is greater than 10 ms, use TC 000 through TC 015.
Refer to 5-13-1 TIMER -- TIM for operational details and examples. Except for
the above, and all aspects of operation are the same.

Timers in interlocked program sections are reset when the execution condition
for IL(02) is OFF. Power interruptions also reset timers. If a timer that is not reset
under these conditions is desired, SR area clock pulse bits can be counted to
produce timers using CNT. Refer to 5-13-3 COUNTER -- CNT for details.
Program execution will continue even if a non-BCD SV is used, but timing will not
be accurate.

Flags ER: SV is not in BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-13-3 COUNTER -- CNT

N: TC number

(000 through 511)
Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas

CP

R

CNT N

SV

Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.

Limitations

Description

Precautions

Limitations

Tim erandCounterInstructions Section 5-13

117

CNT is used to count down from SV when the execution condition on the count
pulse, CP, goes from OFF to ON, i.e., the present value (PV) will be decre-
mented by one whenever CNT is executed with an ON execution condition for
CP and the execution condition was OFF for the last execution. If the execution
condition has not changed or has changed from ON to OFF, the PV of CNT will
not be changed. The Completion Flag for a counter is turned ON when the PV
reaches zero and will remain ON until the counter is reset.

CNT is reset with a reset input, R. When R goes from OFF to ON, the PV is reset
toSV. The PV will not be decrementedwhile R is ON. Counting down from SV will
begin again when R goes OFF. The PV for CNT will not be reset in interlocked
program sections or by power interruptions.

Changes in execution conditions, the Completion Flag, and the PV are illus-
trated below. PV line height is meant only to indicate changes in the PV.

Execution condition
on count pulse (CP)

Execution condition
on reset (R)

ON

OFF

ON

OFF

Completion Flag
ON

OFF

PV
SV

SV -- 1

SV -- 2

0002

0001

0000

SV

Program execution will continue even if a non-BCD SV is used, but the SV will
not be correct.

Flags ER: SV is not in BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

In the following example, the PV will be decremented whenever both 00000 and
00001 are ON provided that 00002 is OFF and either 00000 or 00001 was OFF
the last time CNT 004was executed. When 150pulses havebeen counteddown
(i.e., when PV reaches zero), 00205 will be turned ON.

00000
CP

R

CNT 004

#0150
00002

00001

00205

CNT 004

Address Instruction Operands

00000 LD 00000
00001 AND 00001
00002 LD 00002
00003 CNT 0004

0150
00004 LD CNT 004
00005 OUT 00205

Here, 00000 can be used to control when CNT is operative and 00001 can be
used as the bit whose OFF to ON changes are being counted.

Description

Precautions

Example 1:
Basic Application

Tim erandCounterInstructions Section 5-13

118

Theabove CNT can bemodified to restart from SV each time power is turnedON
to the PC. This is done by using the First Cycle Flag in the SR area (25315) to
reset CNT as shown below.

00000
CP

R

CNT 004

#0150
00002

00001

00205

CNT 004

25315

Address Instruction Operands

00000 LD 00000
00001 AND 00001
00002 LD 00002
00003 OR 25315
00004 CNT 004

0150
00005 LD CNT 004
00006 OUT 00205

Counters that can count past 9,999 can be programmed by using one CNT to
count the number of times another CNT has counted to zero from SV.
In the following example, 00000 is used to control when CNT 001 operates. CNT
001, when 00000 is ON, counts down the number of OFF to ON changes in
00001. CNT 001 is reset by its Completion Flag, i.e., it starts counting again as
soon as its PV reaches zero. CNT 002 counts the number of times the Comple-
tion Flag for CNT 001 goes ON. Bit 00002 serves as a reset for the entire ex-
tended counter, resetting both CNT 001 and CNT 002 when it is OFF. The Com-
pletion Flag for CNT 002 is also used to reset CNT 001 to inhibit CNT 001 opera-
tion, once SV for CNT 002 has been reached, until the entire extended counter is
reset via 00002.
Because in this example the SV for CNT 001 is 100 and the SV for CNT 002 is
200, the Completion Flag for CNT 002 turns ON when 100 x 200 or 20,000 OFF
to ON changes have been counted in 00001. This would result in 00203 being
turned ON.

00203

CP

R

CNT 001

#0100

CP

R

CNT 002

#0200

CNT 001

00002

CNT 002

00000 00001

00002

CNT 001

CNT 002

Address Instruction Operands

00000 LD 00000
00001 AND 00001
00002 LD NOT 00002
00003 OR CNT 001
00004 OR CNT 002
00005 CNT 001

0100
00006 LD CNT 001
00007 LD NOT 00002
00008 CNT 002

0200
00009 LD CNT 002
00010 OUT 00203

CNT can be used in sequence as many times as required to produce counters
capable of counting any desired values.

CNT can be used to create extended timers in two ways: by combining TIM with
CNT and by counting SR area clock pulse bits.
In the following example, CNT 002 counts the number of times TIM 001 reaches
zero from its SV. The Completion Flag for TIM 001 is used to reset TIM 001 so
that it runs continuously and CNT 002 counts the number of times the Comple-
tion Flag for TIM 001 goes ON (CNT 002 would be executed once each time be-

Example 2:
Extended Counter

Example 3:
Extended Timers

Tim erandCounterInstructions Section 5-13

!

119

tween when the Completion Flag for TIM 001 goes ON and TIM 001 is reset by
its Completion Flag). TIM 001 is also reset by the Completion Flag for CNT 002
so that the extended timer would not start again until CNT 002 was reset by
00001, which serves as the reset for the entire extended timer.
Because in this example the SV for TIM 001 is 5.0 seconds and the SV for CNT
002 is 100, the Completion Flag for CNT 002 turns ON when 5 seconds x 100
times, i.e., 500 seconds (or 8 minutes and 20 seconds) have expired. This would
result in 00201 being turned ON.

00000 TIM 001 CNT 002

TIM 001

00001

CNT 002
00201

CP

R

005.0 s

CNT
002

#0100

TIM 001

#0050

Address Instruction Operands

00000 LD 00000
00001 AND NOT TIM 001
00002 AND NOT CNT 002
00003 TIM 001

0050
00004 LD TIM 001
00005 LD 00001
00006 CNT 002

0100
00007 LD CNT 002
00008 OUT 00201

In the following example, CNT 001 counts the number of times the 1-second
clock pulse bit (25502) goes from OFF to ON. Here again, 00000 is used to con-
trol the times when CNT is operating.
Because in this example the SV for CNT 001 is 700, the Completion Flag for
CNT 002 turns ON when 1 second x 700 times, or 11 minutes and 40 seconds
have expired. This would result in 00202 being turned ON.

CP

R

CNT
001

#0700

00000 25502

00001

CNT 001
0202

Address Instruction Operands

00000 LD 00000
00001 AND 25502
00002 LD NOT 00001
00003 CNT 001

0700
00004 LD CNT 001
00005 OUT 00202

Caution The shorter clock pulses will not necessarily produce accurate timers because
their short ON times might not be read accurately during longer cycles. In partic-
ular, the 0.02-second and 0.1-second clock pulses should not be used to create
timers with CNT instructions.

5-13-4 REVERSIBLE COUNTER -- CNTR(12)

N: TC number

(000 through 511)
Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, AR, DM, HR, LR, #

Operand Data Areas

II

DI
CNTR(12)

N

SVR

Tim erandCounterInstructions Section 5-13

120

Each TC number can be used as the definer in only one TIMER or COUNTER
instruction.

The CNTR(12) is a reversible, up/down circular counter, i.e., it is used to count
between zero and SV according to changes in two executionconditions, those in
the increment input (II) and those in the decrement input (DI).
The present value (PV) will be incremented by one whenever CNTR(12) is exe-
cuted with an ON execution condition for II and the last execution condition for II
was OFF. The present value (PV) will be decremented by one whenever
CNTR(12) is executed with an ON execution condition for DI and the last execu-
tion condition for DI was OFF. If OFF to ON changes have occurred in both II and
DI since the last execution, the PV will not be changed.
If the execution conditions have not changed or have changed from ON to OFF
for both II and DI, the PV of CNT will not be changed.
When decremented from 0000, the present value is set to SV and the Comple-
tion Flag is turned ON until the PV is decremented again. When incremented
past the SV, the PV is set to 0000 and the Completion Flag is turned ON until the
PV is incremented again.
CNTR(12) is reset with a reset input, R. When R goes from OFF to ON, the PV is
reset to zero. The PV will not be incremented or decremented while R is ON.
Counting will begin again when R goes OFF. The PV for CNTR(12) will not be
reset in interlocked program sections or by the effects of power interruptions.
Changes in II and DI execution conditions, the Completion Flag, and the PV are
illustrated below starting from part way through CNTR(12) operation (i.e., when
reset, counting begins from zero). PV line height is meant to indicate changes in
the PV only.

Execution condition
on increment (II)

Execution condition
on decrement (DI)

ON

OFF

ON

OFF

Completion Flag
ON

OFF

PV
SV

SV -- 1

SV -- 2
0001

0000 0000

SV

SV -- 1

SV -- 2

Program execution will continue even if a non-BCD SV is used, but the SV will
not be correct.

Flags ER: SV is not in BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

Limitations

Description

Precautions

Tim erandCounterInstructions Section 5-13

121

5-14 Data Shifting
All of the instructions described in this section are used to shift data, but in differ-
ing amounts and directions. The first shift instruction, SFT(10), shifts an execu-
tion condition into a shift register; the rest of the instructions shift data that is al-
ready in memory.

5-14-1 SHIFT REGISTER -- SFT(10)

St: Starting word

IR, AR, HR, LR

E: End word

IR, AR, HR, LR

Operand Data AreasLadder Symbol

I

P

SFT(10)

St

ER

E must be less than or equal to St, and St and E must be in the same data area.

If a bit address in one of the words used in a shift register is also used in an in-
struction that controls individual bit status (e.g., OUT, KEEP(11)), an error
(“COIL DUPL”) will be generated when program syntax is checked on the Pro-
gramming Console or another Programming Device. The program, however,
will be executed as written. See Example 2: Controlling Bits in Shift Registers for
a programming example that does this.

SFT(10) is controlled by three execution conditions, I, P, and R. If SFT(10) is
executed and 1) execution condition P is ON and was OFF the last execution,
and 2) R is OFF, then execution condition I is shifted into the rightmost bit of a
shift register defined between St and E, i.e., if I is ON, a 1 is shifted into the regis-
ter; if I is OFF, a 0 is shifted in. When I is shifted into the register, all bits previously
in the register are shifted to the left and the leftmost bit of the register is lost.

Execution
condition I

Lost
data

E St+1, St+2, ... St

The execution condition on P functions like a differentiated instruction, i.e., I will
be shifted into the register only when P is ON and was OFF the last time SFT(10)
was executed. If execution condition P has not changed or has gone from ON to
OFF, the shift register will remain unaffected.

St designates the rightmost word of the shift register; E designates the leftmost.
The shift register includes both of these words and all words between them. The
same word may be designated for St and E to create a 16-bit (i.e., 1-word) shift
register.

When execution condition R goes ON, all bits in the shift register will be turned
OFF (i.e., set to 0) and the shift register will not operate until R goes OFF again.

Flags There are no flags affected by SFT(10).

Limitations

Description

DataShifting Section 5-14

122

The following example uses the 1-second clock pulse bit (25502) so that the
execution condition produced by 00005 is shifted into a 3-word register between
IR 010 and IR 012 every second.

I

P

SFT(10)

010

012R

00005

25502

00006

Address Instruction Operands

00000 LD 00005
00001 LD 25502
00002 LD 00006
00003 SFT(10)

010
012

The following program is used to control the status of the 17th bit of a shift regis-
ter running from AR 00 through AR 01. When the 17th bit is to be set, 00004 is
turned ON. This causes the jump for JMP(04) 00 not to be made for that one
cycle, and AR 0100 (the 17th bit) will be turned ON. When 12800 is OFF (i.e., at
all times except during the first cycle after 00004 has changed from OFF to ON),
the jump is executed and the status of AR 0100 will not be changed.

I

P

R

SFT(10)

AR 00

AR 01

JME(05) 00

JMP(04) 00

00200

AR 0100

DIFU(13) 12800

00201

00202

00203

00004

12800

12800

Address Instruction Operands

00000 LD 00200
00001 AND 00201
00002 LD 00202
00003 LD 00203
00004 SFT(10)

AR 00
AR 01

00005 LD 00004
00006 DIFU(13) 12800
00007 LD 12800
00008 JMP(04) 00
00009 LD 12800
00010 OUT AR 0100
00011 JME(05) 00

When a bit that is part of a shift register is used in OUT (or any other instruction
that controls bit status), a syntax error will be generated during the program
check, but the program will executed properly (i.e., as written).

The following program controls the conveyor line shown below so that faulty
products detected at the sensor are pushed down a shoot. To do this, the execu-
tion condition determined by inputs from the first sensor (00001) are stored in a
shift register: ON for good products; OFF for faulty ones. Conveyor speed has
been adjusted so that HR 0003 of the shift register can be used to activate a
pusher (00500) when a faulty product reaches it, i.e., when HR 0003 turns ON,
00500 is turned ON to activate the pusher.

The program is set up so that a rotary encoder (00000) controls execution of
SFT(10) through a DIFU(13), the rotary encoder is set up to turn ON and OFF
each time a product passes the first sensor. Another sensor (00002) is used to

Example 1:
Basic Application

Example 2:
Controlling Bits in Shift
Registers

Example 3:
Control Action

DataShifting Section 5-14

123

detect faulty products in the shoot so that the pusher output and HR 0003 of the
shift register can be reset as required.

Chute

(00500)

Sensor
(00001)

Rotary Encoder
(00000)

Pusher

Sensor
(00002)

I

P

SFT(10)

HR 00

HR 01R

00001

00000

00003

00500
HR 0003

00500

HR 0003

00002

Address Instruction Operands

00000 LD 00001
00001 LD 00000
00002 LD 00003
00003 SFT(10)

HR 00
HR 01

00004 LD HR 0003
00005 OUT 00500
00006 LD 00002
00007 OUT NOT 00500
00008 OUT NOT HR 0003

5-14-2 REVERSIBLE SHIFT REGISTER -- SFTR(84)

C: Control word

IR, AR, DM, HR, LR

St: Starting word

IR, AR, DM, HR, LR

Ladder Symbols

Operand Data Areas

E: End word

IR, AR, DM, HR LR

SFTR(84)

C

St

E

@SFTR(84)

C

St

E

St and E must be in the same data area and St must be less than or equal
to E.

SFTR(84) is used to create a single- or multiple-word shift register that can shift
data to either the right or the left. To create a single-word register, designate the
same word for St and E. The control word provides the shift direction, the status

Limitations

Description

DataShifting Section 5-14

124

to be put into the register, the shift pulse, and the reset input. The control word is
allocated as follows:

15 14 13 12 Not used.

Shift direction
1 (ON): Left (LSB to MSB)
0 (OFF): Right (MSB to LSB)

Status to input into register

Shift pulse bit

Reset

The data in the shift register will be shifted one bit in the direction indicated by bit
12, shifting one bit out to CY and the status of bit 13 into the other end whenever
SFTR(84) is executed with an ON execution condition as long as the reset bit is
OFF and as long as bit 14 is ON. If SFTR(84) is executed with an OFF execution
condition or if SFTR(84) is executed with bit 14 OFF, the shift register will remain
unchanged. If SFTR(84) is executed with an ON execution condition and the re-
set bit (bit 15) is OFF, the entire shift register and CY will be set to zero.

Flags ER: St and E are not in the same data area or ST is greater than E.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: Receives the status of bit 00 of St or bit 15 of E, depending on the shift
direction.

In the following example, IR 00005, IR 00006, IR 00007, and IR 00008 are used
to control the bits of C used in @SHIFT(84). The shift register is between LR 20
and LR 21, and it is controlled through IR 00009.

00000 LD 00005
00001 OUT 05012
00002 LD 00006
00003 OUT 05013
00004 LD 00007
00005 OUT 00514
00006 LD 00008
00007 OUT 05015
00008 LD 00009
00009 @SFT(10)

050
LR 20
LR 21

05012
00005

05013

05014

05015

00006

00007

00008

00009

Direction

Status to input

Shift pulse

Reset

@SFTR(84)

050

LR 20

LR 21

Address Instruction Operands

Example

DataShifting Section 5-14

125

5-14-3 ARITHMETIC SHIFT LEFT -- ASL(25)

Wd: Shift word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

ASL(25)

Wd

@ASL(25)

Wd

When theexecution condition is OFF, ASL(25) is not executed. When theexecu-
tion condition is ON, ASL(25) shifts a 0 into bit 00 of Wd, shifts the bits of Wd one
bit to the left, and shifts the status of bit 15 into CY.

1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1
CY

Bit
00

Bit
15

0

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: Receives the status of bit 15.
EQ: ON when the content of Wd is zero; otherwise OFF.

5-14-4 ARITHMETIC SHIFT RIGHT -- ASR(26)

Wd: Shift word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

ASR(26)

Wd

@ASR(26)

Wd

When the execution condition is OFF, ASR(25) is not executed. When the exe-
cution condition is ON, ASR(25) shifts a 0 into bit 15 of Wd, shifts the bits of Wd
one bit to the right, and shifts the status of bit 00 into CY.

1 0 0 1 0 1 1 0 0 1 1 0 0 1 01

Bit
00

Bit
15 CY

0

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: Receives the data of bit 00.
EQ: ON when the content of Wd is zero; otherwise OFF.

5-14-5 ROTATE LEFT -- ROL(27)

Wd: Rotate word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

ROL(27)

Wd

@ROL(27)

Wd

Description

Description

DataShifting Section 5-14

126

When the execution condition is OFF, ROL(27) is not executed. When the exe-
cution condition is ON, ROL(27) shifts all Wd bits one bit to the left, shifting CY
into bit 00 of Wd and shifting bit 15 of Wd into CY.

1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 10

CY
Bit
00

Bit
15

Use STC(41) to set the status of CY or CLC(41) to clear the status of CY before
doing a rotate operation to ensure that CY contains the proper status before ex-
ecution ROL(27).

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: Receives the data of bit 15.
EQ: ON when the content of Wd is zero; otherwise OFF.

5-14-6 ROTATE RIGHT -- ROR(28)

Wd: Rotate word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

ROR(28)

Wd

@ROR(28)

Wd

When the execution condition is OFF, ROR(28) is not executed. When the exe-
cution condition is ON, ROR(28) shifts all Wd bits one bit to the right, shifting CY
into bit 15 of Wd and shifting bit 00 of Wd into CY.

0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 10

Bit
15CY

Bit
00

Use STC(41) to set the status of CY or CLC(41) to clear the status of CY before
doing a rotate operation to ensure that CY contains the proper status before ex-
ecution ROR(28).

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: Receives the data of bit 15.
EQ: ON when the content of Wd is zero; otherwise OFF.

5-14-7 ONE DIGIT SHIFT LEFT -- SLD(74)

Ladder Symbols Operand Data Areas

SLD(74)

St

E

@SLD(74)

St

E

St: Starting word

IR, AR, DM, HR, LR

E: End word

IR, AR, DM, HR, LR

Description

Precautions

Description

Precautions

DataShifting Section 5-14

127

St and E must be in the same data area, and E must be greater than or equal to
St.

When theexecutioncondition is OFF, SLD(74) is not executed. When theexecu-
tion condition is ON, SLD(74) shifts data between St and E (inclusive) by one
digit (four bits) to the left. 0 is written into the rightmost digit of the St, and the
content of the leftmost digit of E is lost.

5

E

8 1

St

F C 97D

Lost data 0

...

If a power failure occurs during a shift operation across more than 50 words, the
shift operation might not be completed.

Flags ER: The St and E words are in different areas, or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-14-8 ONE DIGIT SHIFT RIGHT -- SRD(75)

Ladder Symbols Operand Data Areas

SRD(75)

E

St

@SRD(75)

E

St

E: End word

IR, AR, DM, HR, LR

St: Starting word

IR, AR, DM, HR, LR

St and E must be in the same data area, and E must be less than or equal to St.

When the execution condition is OFF, SRD(75) is not executed. When the exe-
cution condition is ON, SRD(75) shifts data between St and E (inclusive) by one
digit (four bits) to the right. 0 is written into the leftmost digit of St and the right-
most digit of E is lost.

2

St

3 1

E

4 5 C8F

Lost data0

...

If a power failure occurs during a shift operation across more than 50 words, the
shift operation might not be completed.

Flags ER: The St and E words are in different areas, or St is less than E.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

Limitations

Description

Precautions

Limitations

Description

Precautions

DataShifting Section 5-14

128

5-14-9 WORD SHIFT -- WSFT(16)

Ladder Symbols Operand Data Areas

WSFT(16)

St

E

@WSFT(16)

St

E

St: Starting word

IR, AR, DM, HR, LR

E: End word

IR, AR, DM, HR, LR

St and E must be in the same data area, and E must be greater than or equal to
St.

When the execution condition is OFF, WSFT(16) is not executed. When theexe-
cution condition is ON, WSFT(16) shifts data between St and E in word units.
Zeros are written into St and the content of E is lost.

F 0 C 2 3 4 5 2 1 0 2 9

E St + 1 St

3 4 5 2 1 0 2 9 0 0 0 0

E St + 1 St

Lost

0000

Flags ER: The St and E words are in different areas, or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-14-10 REVERSIBLE WORD SHIFT -- RWS(17)

RWS(17)

C

St

E

Ladder Symbols

RWS(17)

C

St

E

C: Control word

IR, SR, AR, DM, HR, TC, LR, #

St: Starting word

IR, AR, DM, HR, LR

E: End word

IR, AR, DM, HR, LR

Operand Data Areas

St and E must be in the same data area, and E must be less than or equal to St.

When the execution condition is OFF, RWS(17) does nothing and the program
moves to the next instruction. When the execution condition is ON, RWS(17) is
used to create and control a reversible asynchronous word shift register be-
tween St and E. This register only shifts words when the next word in the register
is zero, e.g., if no words in the register contain zero, nothing is shifted. Also, only
one word is shifted for each word in the register that contains zero. When the

Limitations

Description

Limitations

Description

DataShifting Section 5-14

129

contents of a word are shifted to the next word, the original word’s contents are
set to zero. In essence, when the register is shifted, each zero word in the regis-
ter trades places with the next word. (See Example below.)

The shift direction (i.e. whether the “next word” is the next higher or the next low-
er word) is designated in C. C is also used to reset the register. All of any portion
of the register can be reset by designating the desired portion with St and E.

Bits 00 through 12 of C are not used. Bit 13 is the shift direction: turn bit 13 ON to
shift down (toward lower addressed words) and OFF to shift up (toward higher
addressed words). Bit 14 is the Shift Enable Bit: turn bit 14 ON to enable shift
register operation according to bit 13 andOFF todisable the register. Bit 15 is the
Reset bit: the register will be reset (set to zero) between St andE whenRWS(17)
is executed with bit 15 ON. Turn bit 15 OFF for normal operation.

Flags ER: The St and E words are in different areas, or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

The following example shows instruction RWS(17) used to shift words in an
11-word shift register created between DM 0100 and DM 0110 assuming that
HR 1215 (the Reset Bit in the control word) is ON, theentire register would beset
to 0000. The data changes that would occur for the given register and control
word contents are also shown.

1234
0000
0000
2345
3456
0000
4567
5678
6789
0000
789A

1234
0000

0000
2345

3456
0000

4567
5678

6789
0000

789A

Before
execution

After
execution

DM 0100
DM 0101
DM 0102
DM 0103
DM 0104
DM 0105
DM 0106
DM 0107
DM 0108
DM 0109
DM 0110

HR 1213: OFF (Shift upward)
HR 1214: ON (Shift enabled)
HR 1215: OFF (Reset OFF)

5-15 Data Movement
This section describes the instructions used for moving data between different
addresses in data areas. These movements can be programmed to be within
the same data area or between different data areas. Data movement is essential
for utilizing all of the data areas of the PC. Effective communications in Link Sys-
tems also requires data movement. All of these instructions change only the
content of the words to which data is being moved, i.e., the content of source
words is the same before and after execution of any of the data movement in-
structions.

Control Word

Example

DataM ovem ent Section 5-15

130

5-15-1 MOVE -- MOV(21)

S: Source word

IR, SR, AR, DM, HR, TC, LR, #

D: Destination word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

MOV(21)

S

D

@MOV(21)

S

D

When the execution condition is OFF, MOV(21) is not executed. When the exe-
cution condition is ON, MOV(21) copies the content of S to D.

Source word Destination word

Bit status
not changed.

TC numbers cannot be designated as D to change the PV of the timer or counter.
You can, however, easily change the PV of a timer or a counter by using
BSET(71).

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when all zeros are transferred to D.

5-15-2 MOVE NOT -- MVN(22)

S: Source word

IR, SR, AR, DM, HR, TC, LR, #

D: Destination word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

MVN(22)

S

D

@MVN(22)

S

D

When the execution condition is OFF, MVN(22) is not executed. When the exe-
cution condition is ON, MVN(22) transfers the inverted content of S (specified
word or four-digit hexadecimal constant) to D, i.e., for each ONbit inS, thecorre-
sponding bit in D is turned OFF, and for each OFF bit in S, the corresponding bit
in D is turned ON.

Source word Destination word

Bit status
inverted.

TC numbers cannot be designated as D to change the PV of the timer or counter.
However, these can be easily changed using BSET(71).

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when all zeros are transferred to D.

Description

Precautions

Description

Precautions

DataM ovem ent Section 5-15

131

5-15-3 COLUMN-TO-WORD -- CTW(63)

S: First word of 16 word source set

IR, SR, AR, DM, HR, LR

C: Column bit designator (BCD)

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: Destination word

IR, AR, DM, HR, LR

CTW(63)

S

C

D

@CTW(63)

S

C

D

C must be between #0000 and #0015.

When the execution condition is OFF, CTW(63) is not executed. When the exe-
cution condition is ON, CTW(63) copies bit column C from the 16-word set (S to
S+15) to the 16 bits of word D (00 to 15).

0

0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1

Bit
15

Bit
00

S

C

1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1S+1
0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1S+2

.

.

.

.

.

.

. . .

.

.

.
0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0S+15

1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1S+3

0 1 1D 1

Bit
15

Bit
00

.

.

.

Flags ER: The column bit designator C is not BCD, or it is specifying anon-existent
bit (i.e., bit specification must be between 00 and 15).

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the content of D is zero; otherwise OFF.

The following example shows how to use CTW(63) to move bit column 07 from
the set (IR 100 to IR 115) to DM 0100.

CTW(63)

100

#0007

DM 0100

00000
Address Instruction Operands

00000 LD 00000
00001 CTW(63)

100
0007
DM 0100

Limitations

Description

Example

DataM ovem ent Section 5-15

132

5-15-4 WORD-TO-COLUMN -- WTC(64)

S: Source word

IR, SR, AR, DM, HR, LR

C: Column bit designator (BCD)

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: First word of the destination set

IR, AR, DM, HR, LR

WTC(64)

S

D

C

@WTC(64)

S

D

C

C must be between #0000 and #0015.

When the execution condition is OFF, WTC(64) is not executed. When the exe-
cution condition is ON, WTC(64) copies the 16 bits of word S (00 to 15) to the
column of bits, C, of the 16-word set (D to D+15).

0

0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1

Bit
15

Bit
00

D

C

1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1D+1
0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1D+2

.

.

.

.

.

.

.

.

.

.
0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0D+15

1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1D+3

0 1 1S 1

Bit
15

Bit
00

......

.

.

.

Flags ER: The bit designator C is not BCD, or it is specifying a non-existent bit (i.e.,
bit specification must be between 00 and 15).

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the content of S is zero; otherwise OFF.

The following example shows how to use WTC(64) to move the contents of word
DM 0100 (00 to 15) to bit column 15 of the set (DM 0200 to DM 0215).

WTC(64)

DM 0100

DM 0200

#0015

00000
Address Instruction Operands

00000 LD 00000
00001 WTC(64)

DM 0100
DM 0200
0015

Limitations

Description

Example

DataM ovem ent Section 5-15

133

5-15-5 BLOCK SET -- BSET(71)

S: Source data

IR, SR, AR, DM, HR, TC, LR, #

St: Starting word

IR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

E: End Word

IR, AR, DM, HR, TC, LR

BSET(71)

S

St

E

@BSET(71)

S

St

E

St must be less than or equal to E, and St and E must be in the same data area.

When the execution condition is OFF, BSET(71) is not executed. When the exe-
cution condition is ON, BSET(71) copies the content of S to all words from St
through E.

2

S

3 4 5 2

St

3 4 5

2

St+1

3 4 5

2

St+2

3 4 5

2

E

3 4 5

BSET(71) can be used to change timer/counter PV. (This cannot be done with
MOV(21) or MVN(22).) BSET(71) can also be used to clear sections of a data
area, i.e., the DM area, to prepare for executing other instructions.

Flags ER: St and E are not in the same data area or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

The following example shows how to use BSET(71) to change the PV of a timer
depending on the status of IR 00003 and IR 00004. When IR 00003 is ON, TIM

Limitations

Description

Example

DataM ovem ent Section 5-15

134

010 will operate as a 50-second timer; when IR 00004 is ON, TIM 010 will oper-
ate as a 30-second timer.

TIM 010

#9999

@BSET(71)

#0500

TIM 010

TIM 010

@BSET(71)

#0300

TIM 010

TIM 010

00004

00003

00003

00004

00004

00003

Address Instruction Operands

00000 LD 00003
00001 AND NOT 00004
00002 @BSET(71)

0500
TIM 010
TIM 010

00003 LD 00004
00004 AND NOT 00003
00005 @BSET(71)

0300
TIM 010
TIM 010

00006 LD 00003
00007 OR 00004
00008 TIM 010

9999

5-15-6 BLOCK TRANSFER -- XFER(70)

N: Number of words (BCD)

IR, SR, AR, DM, HR, TC, LR, #

S: Starting source word

IR, SR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

D: Starting destination word

IR, AR, DM, HR, TC, LR

XFER(70)

N

S

D

@XFER(70)

N

S

D

Both S and D may be in the same data area, but their respective block areas
must not overlap. S andS+N must be in the samedata area, as must D andD+N,

When the execution condition is OFF, XFER(70) is not executed. When the exe-
cution condition is ON, XFER(70) copies the contents of S, S+1, ..., S+N to D,
D+1, ..., D+N.

2

D

3 4 5

1

D+1

3 4 5

2

D+2

3 4 2

2

D+N

6 4 5

2

S

3 4 5

1

S+1

3 4 5

2

S+2

3 4 2

2

S+N

6 4 5

Flags ER: N is not BCD

Limitations

Description

DataM ovem ent Section 5-15

135

S and S+N or D and D+N are not in the same data area.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-15-7 DATA EXCHANGE -- XCHG(73)

E1: Exchange word 1

IR, AR, DM, HR, TC, LR

E2: Exchange word 2

IR, AR, DM, HR, TC, LR

Ladder Symbols Operand Data Areas

XCHG(73)

E1

E2

@XCHG(73)

E1

E2

When the execution condition is OFF, XCHG(73) is not executed. When theexe-
cution condition is ON, XCHG(73) exchanges the content of E1 and E2.

E2E1

If you want to exchange content of blocks whose size is greater than 1 word, use
work words as an intermediate buffer to hold one of the blocks using XFER(70)
three times.

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-15-8 SINGLE WORD DISTRIBUTE -- DIST(80)

S: Source data

IR, SR, AR, DM, HR, TC, LR, #

DBs: Destination base word

IR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

Of: Offset data (BCD)

IR, AR, DM, HR, TC, LR, #

DIST(80)

S

DBs

Of

@DIST(80)

S

DBs

Of

Of must be a BCD. DBs must be in the same data area as DBs+Of.

When the execution condition is OFF, DIST(80) is not executed. When the exe-
cution condition is ON, DIST(80) copies the content of S to DBs+Of, i.e.,Of is
added to DBs to determine the destination word.

2

DBs + Of

3 4 52

S

3 4 5

Flags ER: The specified offset data is not BCD, or when added to the DBs, the re-
sulting address lies outside the data area of the DBs.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

Description

Limitations

Description

DataM ovem ent Section 5-15

136

EQ: ON when the content of S is zero; otherwise OFF.

5-15-9 DATA COLLECT -- COLL(81)

SBs: Source base word

IR, SR, AR, DM, HR, TC, LR

Of: Offset data (BCD)

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: Destination word

IR, AR, DM, HR, TC, LR

COLL(81)

SBs

Of

D

@COLL(81)

SBs

Of

D

Of must be a BCD. SBs must be in the same data area as SBs+Of.

When the execution condition is OFF, COLL(81) is not executed. When the exe-
cution condition is ON, COLL(81) copies the content of SBs + Of to D, i.e., Of is
added to SBs to determine the source word.

2

D

3 4 52

SBs + Of

3 4 5

Flags ER: Of is not BCD, or when added to the SBs, or when added to the SBs, the
resulting address lies outside the data area of the SBs.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the content of S is zero; otherwise OFF.

5-15-10 MOVE BIT -- MOVB(82)

S: Source word

IR, SR, AR, DM, HR, LR, #

Bi: Bit designator (BCD)

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: Destination word

IR, AR, DM, HR, LR

MOVB(82)

S

Bi

D

@MOVB(82)

S

Bi

D

Limitations The rightmost two digits and the leftmost two digits of Bi must each be between
00 and 15.

When theexecution condition is OFF, MOVB(82) is not executed. When theexe-
cution condition is ON, MOVB(82) copies the specified bit of S to the specifiedbit

Limitations

Description

Description

DataM ovem ent Section 5-15

137

in D. The bits in S and D are specified by Bi. The rightmost two digits of Bi desig-
nate the source bit; the leftmost two bits designate the destination bit.

1

Bi

1 2 0

Source bit (00 to 15)

Destination bit (00 to 15)

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1

Bit
15

Bit
00

0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1

0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1

S

D

Bi

1 2 0 1Bit
15

Bit
15

Bit
00

Bit
00

LSBMSB

Flags ER: C is not BCD, or it is specifying a non-existent bit (i.e., bit specification
must be between 00 and 15).

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-15-11 MOVE DIGIT -- MOVD(83)

S: Source word

IR, SR, AR, DM, HR, TC, LR, #

Di: Digit designator (BCD)

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: Destination word

IR, AR, DM, HR, TC, LR

MOVD(83)

S

Di

D

@MOVD(83)

S

Di

D

Limitations The rightmost three digits of Di must each be between 0 and 3.

When theexecutioncondition is OFF, MOVD(83) is not executed. When theexe-
cution condition is ON, MOVD(83) copies thecontent of the specifieddigit(s) inS
to the specified digit(s) in D. Up to four digits can be transferred at one time. The
first digit to be copied, the number of digits to be copied, and the first digit to re-
ceive the copy are designated in Di as shown below. Digits from S will be copied
to consecutive digits in D starting from the designated first digit and continued for
the designated number of digits. If the last digit is reached in either S or D, further
digits are used starting back at digit 0.

First digit in S (0 to 3)

Number of digits (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First digit in D (0 to 3)

Not used.

Digit number: 3 2 1 0

Description

DataM ovem ent Section 5-15

138

The following show examples of the data movements for various values of Di.

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

S

Di: 0031 Di: 0023

Di: 0030Di: 0010

S

SS

0

1

2

3

D

0

1

2

3

D

0

1

2

3

D

0

1

2

3

D

Flags ER: At least one of the rightmost three digits of Di is not between 0 and 3.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-16 Data Comparison
This section describes the instructions used for comparing data. CMP(20) is
used to compare the contents of two words; BCMP(68) is used to determine
within which of several preset ranges the content of one word lies; and
TCMP(85) is used to determine which of several preset values the content of
one word equals.

5-16-1 MULTI-WORD COMPARE -- MCMP(19)

TB1: First word of table 1

IR, SR, AR, DM, HR, TC, LR

TB2: First word of table 2

IR, SR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, TC, LR

MCMP(19)

TB1

TB2

R

@MCMP(19)

TB1

TB2

R

Limitations TB1 and TB1+15 must be in the same data area.
TB2 and TB2+15 must be in the same data area.

When the execution condition is OFF, MCMP(19) is not executed. When the
execution condition is ON, MCMP(19) compares the content of TB1 to TB2,
TB1+1 to TB2+1, TB1+2 to TB2+2, ..., and TB1+15 to TB2+15. If the first pair is
equal, the first bit in R is turned OFF, etc., i.e., if the content of TB1 equals the
content of TB2, bit 00 is turned OFF, if thecontent of TB1+1 equals the content of
TB2+1, bit 01 is turned OFF, etc. The rest of the bits in R will be turned ON.

Flags ER: One of the tables (i.e., TB1 through TB1+15, or TB2 through TB2+15)
exceeds the data area.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

Digit Designator

Description

DataCom parison Section 5-16

139

The following example shows the comparisons made and the results provided
for MCMP(19). Here, the comparison is made during each cycle when 00000 is
ON.

IR 100 0100 DM 0200 0100 DM 030000 0
IR 101 0200 DM 0201 0200 DM 030001 0
IR 102 0210 DM 0202 0210 DM 030002 0

IR 103 ABCD DM 0203 0400 DM 030003 1
IR 104 ABCD DM 0204 0500 DM 030004 1
IR 105 ABCD DM 0205 0600 DM 030005 1
IR 106 ABCD DM 0206 0210 DM 030006 1
IR 107 0800 DM 0207 0800 DM 030007 0

IR 108 0900 DM 0208 0900 DM 030008 0
IR 109 1000 DM 0209 1000 DM 030009 0
IR 110 ABCD DM 0210 0210 DM 030010 1
IR 111 ABCD DM 0211 1200 DM 030011 1
IR 112 ABCD DM 0212 1300 DM 030012 1

IR 113 1400 DM 0213 1400 DM 030013 0
IR 114 0210 DM 0214 0210 DM 030014 0
IR 115 1212 DM 0215 1600 DM 030015 1

MCMP(19)

100

DM 0200

DM 0300

00000

TB1: IR 100 TB2: DM 0200 R: DM 0300

Address Instruction Operands

00000 LD 00000
00001 MCMP(19)

100
DM 0200
DM 0300

5-16-2 COMPARE -- CMP(20)

Cp1: First compare word

IR, SR, AR, DM, HR, TC, TR, #

Cp2: Second compare word

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols Operand Data Areas

CMP(20)

Cp1

Cp2

When comparing a value to the PV of a timer or counter, the value must be in
BCD.

When the execution condition is OFF, CMP(20) is not executed. When the exe-
cution condition is ON, CMP(20) compares Cp1 and Cp2 and outputs the result
to the GR, EQ, and LE flags in the SR area.

Placing other instructions between CMP(20) and the operation which accesses
the EQ, LE, and GR flags may change the status of these flags. Be sure to ac-
cess them before the desired status is changed.

Example

Limitations

Description

Precautions

DataCom parison Section 5-16

140

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON if Cp1 equals Cp2.

LE: ON if Cp1 is less than Cp2.

GR: ON if Cp1 is greater than Cp2.

Flag Address C1 < C2 C1 = C2 C1 > C2

GR 25505 OFF OFF ON

EQ 25506 OFF ON OFF

LE 25507 ON OFF OFF

The following example shows how to save the comparison result immediately. If
the content of HR 09 is greater than that of 010, 00200 is turned ON; if the two
contents are equal, 00201 is turned ON; if content of HR 09 is less than that of
010, 00202 is turnedON. Insome applications, only oneof the three OUTs would
be necessary, making the use of TR 0 unnecessary. With this type of program-
ming, 00200, 00201, and 00202 are changed only when CMP(20) is executed.

CMP(20)

010

HR 09

00000

25505
00200

25507
00202

TR
0

25506

00201

Greater Than

Equal

Less Than

Address Instruction Operands Address Instruction Operands

00000 LD 00000
00001 OUT TR 0
00002 CMP(20)

010
HR 09

00003 LD TR 0
00004 AND 25505

00005 OUT 00200
00006 LD TR 0
00007 AND 25506
00008 OUT 00201
00009 LD TR 0
00010 AND 25507
00011 OUT 00202

The following example uses TIM, CMP(20), and the LE flag (25507) to produce
outputs at particular times in the timer’s countdown. The timer is started by turn-
ing ON 00000. When 00000 is OFF, TIM 010 is reset and the second two
CMP(20)s are not executed (i.e., executedwith OFF execution conditions). Out-
put 00200 is produced after 100 seconds; output 00201, after 200 seconds; out-
put 00202, after 300 seconds; and output 00204, after 500 seconds.

The branching structure of this diagram is important in order to ensure that
00200, 00201, and 00202 are controlled properly as the timer counts down. Be-

Example 1:
Saving CMP(20) Results

Example 2:
Obtaining Indications
during Timer Operation

DataCom parison Section 5-16

141

cause all of the comparisons here use to the timer’s PV as reference, the other
operand for each CMP(20) must be in 4-digit BCD.

#2000

CMP(20)

TIM 010

#3000

CMP(20)

TIM 010

CMP(20)

TIM 010

#4000

00201

00204

00202

00000

00200

25507

00200

25507

00201

25507

TIM 010

500.0 s

Output at
100 s.

Output at
200 s.

Output at
300 s.

Output at
500 s.

TIM 010

#5000

Address Instruction Operands Address Instruction Operands

00000 LD 00000
00001 TIM 010

5000
00002 CMP(20)

TIM 010
4000

00003 AND 25507
00004 OUT 00200
00005 LD 00200
00006 CMP(20)

TIM 010
3000

00007 AND 25507
00008 OUT 00201
00009 LD 00201
00010 CMP(20)

TIM 010
2000

00011 AND 25507
00012 OUT 00202
00013 LD TIM 010
00014 OUT 00204

5-16-3 DOUBLE COMPARE -- CMPL(60)

Cp2: First word of second compare word pair

IR, SR, AR, DM, HR, TC, LR

Cp1: First word of first compare word pair

IR, SR, AR, DM, HR, TC, TR

Ladder Symbols Operand Data Areas

CMPL(60)

Cp1

Cp2

Limitations Cp1 and Cp1+1 must be in the same data area.

DataCom parison Section 5-16

142

Cp2 and Cp2+1 must be in the same data area.

When the execution condition is OFF, CMPL(60) is not executed. When the exe-
cution condition is ON, CMPL(60) joins the 4-digit hexadecimal content of
Cp1+1 with that of Cp1, and that of Cp2+1 with that of Cp2 to create two 8-digit
hexadecimal numbers, Cp+1,Cp1 and Cp2+1,Cp2. The two 8-digit numbers are
then compared and the result is output to the GR, EQ, and LE flags in the SR
area.

Placing other instructions between CMPL(60) and the operation which ac-
cesses the EQ, LE, and GR flags may change the status of these flags. Be sure
to access them before the desired status is changed.

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

GR: ON if Cp1+1,Cp1 is greater than Cp2+1,Cp2.

EQ: ON if Cp1+1,Cp1 equals Cp2+1,Cp2.

LE: ON if Cp1+1,Cp1 is less than Cp2+1,Cp2.

The following example shows how to save the comparison result immediately. If
the content of HR 10, HR 09 is greater than that of 011, 010, then 00200 is turned
ON; if the two contents are equal, 00201 is turned ON; if content of HR 10, HR 09
is less than that of 011, 010, then 00202 is turned ON. In some applications, only
one of the threeOUTs wouldbe necessary, making theuse of TR 0unnecessary.
With this type of programming, 00200, 00201, and 00202 are changed only
when CMPL(60) is executed.

CMPL(60)

010

HR 09

00000

25505
00200

25507
00202

TR
0

25506

00201

Greater Than

Equal

Less Than

Address Instruction Operands Address Instruction Operands

00000 LD 00000
00001 OUT TR 0
00002 CMPL(60)

HR 09
010

00003 AND 25505

00004 OUT 00200
00005 LD TR 0
00006 AND 25506
00007 OUT 00201
00008 LD TR 0
00009 AND 25507
00010 OUT 00202

Description

Precautions

Example:
Saving CMPL(60) Results

DataCom parison Section 5-16

143

5-16-4 BLOCK COMPARE -- BCMP(68)

CD: Compare data

IR, SR, DM, HR, TC, LR, #

CB: First comparison block word

IR, SR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, TC, LR

BCMP(68)

CD

CB

R

@BCMP(68)

CD

CB

R

Each lower limit word in the comparison block must be less than or equal to the
upper limit.

When the execution condition is OFF, BCMP(68) is not executed. When theexe-
cution condition is ON, BCMP(68) compares CDto the ranges definedby ablock
consisting of of CB, CB+1, CB+2, ..., CB+32. Each range is defined by two
words, the first one providing the lower limit and the second word providing the
upper limit. If CD is found to be within any of these ranges (inclusive of the upper
and lower limits), the corresponding bit in R is set. The comparisons that are
made and the corresponding bit in R that is set for each true comparison are
shown below. The rest of the bits in R will be turned OFF.

CB ' CD ' CB+1 Bit 00
CB+2 ' CD ' CB+3 Bit 01
CB+4 ' CD ' CB+5 Bit 02
CB+6 ' CD ' CB+7 Bit 03
CB+8 ' CD ' CB+9 Bit 04
CB+10 ' CD ' CB+11 Bit 05
CB+12 ' CD ' CB+13 Bit 06
CB+14 ' CD ' CB+15 Bit 07
CB+16 ' CD ' CB+17 Bit 08
CB+18 ' CD ' CB+19 Bit 09
CB+20 ' CD ' CB+21 Bit 10
CB+22 ' CD ' CB+23 Bit 12
CB+24 ' CD ' CB+25 Bit 13
CB+26 ' CD ' CB+27 Bit 14
CB+28 ' CD ' CB+29 Bit 15
CB+30 ' CD ' CB+31 Bit 16

Flags ER: The comparison block (i.e., CB through CB+31) exceeds the data area.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

Limitations

Description

DataCom parison Section 5-16

144

The following example shows the comparisons made and the results provided
for BCMP(68). Here, the comparison is made during each cycle when 00000 is
ON.

CD 001 Lower limits Upper limits R: HR 05

001 0210 HR 10 0000 HR 11 0100 HR 0500 0
HR 12 0101 HR 13 0200 HR 0501 0
HR 14 0201 HR 15 0300 HR 0502 1
HR 16 0301 HR 17 0400 HR 0503 0

HR 18 0401 HR 19 0500 HR 0504 0
HR 20 0501 HR 21 0600 HR 0505 0
HR 22 0601 HR 23 0700 HR 0506 0
HR 24 0701 HR 25 0800 HR 0507 0

HR 26 0801 HR 27 0900 HR 0508 0
HR 28 0901 HR 29 1000 HR 0509 0
HR 30 1001 HR 31 1100 HR 0510 0
HR 32 1101 HR 33 1200 HR 0511 0
HR 34 1201 HR 35 1300 HR 0512 0

HR 36 1301 HR 37 1400 HR 0513 0
HR 38 1401 HR 39 1500 HR 0514 0
HR 40 1501 HR 41 1600 HR 0515 0

BCMP(68)

001

HR 10

HR 05

00000

Compare data in IR 001

(which contains 0210)
with the given ranges.

Address Instruction Operands

00000 LD 00000
00001 BCMP(88)

001
HR 10
HR 05

5-16-5 TABLE COMPARE -- TCMP(85)

CD: Compare data

IR, SR, AR, DM, HR, TC, LR, #

TB: First comparison table word

IR, SR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, TC, LR

TCMP(85)

CD

TB

R

@TCMP(85)

CD

TB

R

When the execution condition is OFF, TCMP(85) is not executed. When theexe-
cution condition is ON, TCMP(85) compares CD to the content of TB, TB+1,
TB+2, ..., and TB+15. If CD is equal to the content of any of these words, the
corresponding bit in R is set, e.g., if the CD equals the content of TB, bit 00 is
turned ON, if it equals that of TB+1, bit 01 is turned ON, etc. The rest of the bits in
R will be turned OFF.

Flags ER: The comparison table (i.e., TB through TB+15) exceeds the data area.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

Example

Description

DataCom parison Section 5-16

145

The following example shows the comparisons made and the results provided
for TCMP(85). Here, the comparison is made during each cycle when 00000 is
ON.

CD: 001 Upper limits R: HR 05

001 0210 HR 10 0100 HR 0500 0
HR 11 0200 HR 0501 0
HR 12 0210 HR 0502 1
HR 13 0400 HR 0503 0

HR 14 0500 HR 0504 0
HR 15 0600 HR 0505 0
HR 16 0210 HR 0506 1
HR 17 0800 HR 0507 0

HR 18 0900 HR 0508 0
HR 19 1000 HR 0509 0
HR 20 0210 HR 0510 1
HR 21 1200 HR 0511 0
HR 22 1300 HR 0512 0

HR 23 1400 HR 0513 0
HR 24 0210 HR 0514 1
HR 25 1600 HR 0515 0

TCMP(85)

001

HR 10

HR 05

00000

Compare the data in IR 001
with the given ranges.

Address Instruction Operands

00000 LD 00000
00001 TCMP(85)

001
HR 10
HR 05

Example

DataCom parison Section 5-16

146

5-17 Data Conversion
The conversion instructions convert word data that is in one format into another
format and output the converted data to specified result word(s). Conversions
are available to convert between binary (hexadecimal) and BCD, to 7-segment
display data, to ASCII, and between multiplexedand non-multiplexeddata. All of
these instructions change only the content of the words to which converted data
is being moved, i.e., the content of source words is the same before and after
execution of any of the conversion instructions.

5-17-1 BCD-TO-BINARY -- BIN(23)

S: Source word (BCD)

IR, SR, AR, DM, HR, TC, LR

R: Result word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

BIN(23)

S

R

@BIN(23)

S

R

When the execution condition is OFF, BIN(23) is not executed. When the execu-
tion condition is ON, BIN(23) converts the BCD content of S into the numerically
equivalent binary bits, and outputs the binary value to R. Only the content of R is
changed; the content of S is left unchanged.

S

R

BCD

Binary

BIN(23) can be used to convert BCD to binary so that displays on the Program-
ming Console or any other programming device will appear in hexadecimal
rather than decimal. It can also be used to convert to binary to perform binary
arithmetic operations rather than BCD arithmetic operations, e.g., when BCD
and binary values must be added.

Flags ER: The content of S is not BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is zero.

5-17-2 DOUBLE BCD-TO-DOUBLE BINARY -- BINL(58)

S: First source word (BCD)

IR, SR, AR, DM, HR, TC, LR

R: First result word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

BINL(58)

S

R

@BINL(58)

S

R

Description

DataConversion Section 5-17

147

When the execution condition is OFF, BINL(58) is not executed. When the exe-
cution condition is ON, BINL(58) converts an eight-digit number in S and S+1
into 32-bit binary data, and outputs the converted data to R and R+1.

S + 1 S

R + 1 R

BCD

Binary

Flags ER: The contents of S and/or S+1 words are not BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is zero.

5-17-3 BINARY-TO-BCD -- BCD(24)

S: Source word (binary)

IR, SR, AR, DM, HR, LR

R: Result word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

BCD(24)

S

R

@BCD(24)

S

R

If the content of S exceeds 270F, the converted result would exceed 9999 and
BCD(24) will not be executed. When the instruction is not executed, the content
of R remains unchanged.

BCD(24) converts the binary (hexadecimal) content of S into the numerically
equivalent BCD bits, and outputs the BCD bits to R. Only the content of R is
changed; the content of S is left unchanged.

S

RBCD

Binary

BCD(24) can be used to convert binary to BCD so that displays on the Program-
ming Console or any other programming device will appear in decimal rather
than hexadecimal. It can also be used to convert to BCD to perform BCD arith-
metic operations rather than binary arithmetic operations, e.g., when BCD and
binary values must be added.

Flags ER: S is greater than 270F.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is zero.

Description

Limitations

Description

DataConversion Section 5-17

148

5-17-4 DOUBLE BINARY-TO-DOUBLE BCD -- BCDL(59)

S: First source word (binary)

IR, SR, AR, DM, HR, LR

R: First result word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

BCDL(59)

S

R

@BCDL(59)

S

R

If the content of S exceeds 05F5E0FF, the converted result would exceed
99999999 and BCDL(59) will not be executed. When the instruction is not exe-
cuted, the content of R and R+1 remain unchanged.

BCDL(59) converts the 32-bit binary content of S and S+1 into eight digits of
BCD data, and outputs the converted data to R and R+1.

S + 1 S

R + 1 RBCD

Binary

Flags ER: Content of R and R+1 exceeds 99999999.
Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is zero.

5-17-5 HOURS-TO-SECONDS -- HTS(65)

S: Beginning source word (BCD)

IR, SR, AR, DM, HR, TC, LR

R: Beginning result word (BCD)

IR, SR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

---: Not used.

HTS(65)

S

R

@HTS(65)

S

R

Limitations S and S+1 must be within the same data area. R and R+1 must be within the
same data area. S and S+1 must be BCD and must be in the proper hours/minu-
tes/seconds format.

Description HTS(65) is used to convert time notation in hours/minutes/seconds to an equiv-
alent in just seconds.
For the source data, the seconds is designated in bits 00 through 07and themin-
utes is designated in bits 08 through 15of S. The hours is designated in S+1. The
maximum is thus 9,999 hours, 59 minutes, and 59 seconds.
The results is output to R and R+1. The maximum obtainable value is
35,999,999 seconds.

Limitations

Description

DataConversion Section 5-17

149

Flags ER: S and S+1 or R and R+1 are not in the same data area.

S and/or S+1 do not contain BCD.

Number of seconds and/or minutes exceeds 59.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: Turns ON when the result is zero.

Example When 00000 is OFF (i.e., when the execution condition is ON), the following in-
struction would convert the hours, minutes, and seconds given in HR 12 and HR
13 to seconds and store the results in DM 0100 and DM 0101 as shown.

HTS(65)

HR 12

DM 0100

000

00000

HR 12 3 2 0 7

HR 13 2 8 1 5

DM 0100 5 9 2 7

DM 0101 1 0 1 3

2,815 hrs, 32 min, 07 s

10,135,927 s

Address Instruction Operands

00000 LD NOT 00000
00001 HTS(65)

HR 12
DM 0100

000

5-17-6 SECONDS-TO-HOURS -- STH(66)

S: Beginning source word (BCD)

IR, SR, AR, DM, HR, TC, LR

R: Beginning result word (BCD)

IR, SR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

---: Not used.

STH(66)

S

R

@STH(66)

S

R

Limitations S and S+1 must be within the same data area. R and R+1 must be within the
same data area. S and S+1 must be BCD and must be between 0 and
35,999,999 seconds.

Description STH(66) is used to convert time notation in seconds to anequivalent inhours/mi-
nutes/seconds.
The number of seconds designated in S and S+1 is converted to hours/minutes/
seconds and placed in R and R+1.
For the results, the seconds is placed in bits 00 through 07 and the minutes is
placed in bits 08 through 15 of R. The hours is placed in R+1. The maximum will
be 9,999 hours, 59 minutes, and 59 seconds.

Flags ER: S and S+1 or R and R+1 are not in the same data area.

S and/or S+1 do not contain BCD or exceed 36,000,000 seconds.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: Turns ON when the result is zero.

DataConversion Section 5-17

150

Example When 00000 is OFF (i.e., when the execution condition is ON), the following in-
struction would convert the seconds given in HR 12 and HR 13 to hours, min-
utes, and seconds and store the results in DM 0100 and DM 0101 as shown.

STH(66)

HR 12

DM 0100

000

00000

HR 12 5 9 2 7

HR 13 1 0 1 3

DM 0100 3 2 0 7

DM 0101 2 8 1 5

10,135,927 s

2,815 hrs, 32 min, 07 s

Address Instruction Operands

00000 LD NOT 00000
00001 STH(66)

HR 12
DM 0100

000

5-17-7 4-TO-16 DECODER -- MLPX(76)

S: Source word

IR, SR, AR, DM, HR, TC, LR

Di: Digit designator

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR, LR

MLPX(76)

S

Di

R

@MLPX(76)

S

Di

R

The rightmost two digits of Di must each be between 0 and 3.
All result words must be in the same data area.

When the execution condition is OFF, MLPX(76) is not executed. When the exe-
cution condition is ON, MLPX(76) converts up to four, four-bit hexadecimaldigits
from S into decimal values from 0 to 15, each of which is used to indicate a bit
position. The bit whose number corresponds to each converted value is then
turned ON in a result word. If more than one digit is specified, then one bit will be
turned ON in each of consecutive words beginning with R. (See examples, be-
low.)
The following is an example of a one-digit decode operation from digit number 1
of S, i.e., here Di would be 0001.

Source word

First result word

C

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Bit C (i.e., bit number 12) turned ON.

The first digit and the number of digits to be converted are designated in Di. If
more digits are designated than remain in S (counting from the designated first
digit), the remaining digits will be taken starting back at the beginning of S. The

Limitations

Description

DataConversion Section 5-17

151

final word required to store the converted result (R plus the number of digits tobe
converted) must be in the same data area as R, e.g., if two digits are converted,
the last word address in a data area cannot be designated; if three digits are con-
verted, the last two words in a data area cannot be designated.

The digits of Di are set as shown below.

Specifies the first digit to be converted (0 to 3)

Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

Not used

Digit number: 3 2 1 0

Some example Di values and the digit-to-word conversions that they produce
are shown below.

0

1

2

3

R

R + 1

R

R + 1

R + 2

0

1

2

3

0

1

2

3

0

1

2

3

R

R + 1

R + 2

R + 3

R

R + 1

R + 2

R + 3

S

Di: 0031 Di: 0023

Di: 0030Di: 0010

S

SS

Flags ER: Undefined digit designator, or R plus number of digits exceeds a data
area.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

Digit Designator

DataConversion Section 5-17

152

The following program converts three digits of data from DM 0020 to bit positions
and turns ON the corresponding bits in three consecutive words starting with HR
10.

00000
MLPX(76)

DM 0020

#0021

HR 10

Address Instruction Operands

00000 LD 00000
00001 MLPX(76)

DM 00200
0021
HR 10

S: DM 0020 R: HR 10 R+1: HR 11 R+2: HR 12

DM 00 20 HR 1000 0 HR 1100 0 HR 1200 1
DM 01 21 HR 1001 0 HR 1101 0 HR 1201 0
DM 02 22 HR 1002 0 HR 1102 0 HR 1202 0
DM 03 23 HR 1003 0 HR 1103 0 HR 1203 0

DM 04 1 20 HR 1004 0 HR 1104 0 HR 1204 0
DM 05 1 21 1 HR 1005 0 HR 1105 0 HR 1205 0
DM 06 1 22 HR 1006 0 HR 1106 1 HR 1206 0
DM 07 1 23 HR 1007 0 HR 1107 0 HR 1207 0

DM 08 0 20 HR 1008 0 HR 1108 0 HR 1208 0
DM 09 1 21 2 HR 1009 0 HR 1109 0 HR 1209 0
DM 10 1 22 HR 1010 0 HR 1110 0 HR 1210 0
DM 11 0 23 HR 1011 0 HR 1111 0 HR 1211 0
DM 12 0 20 HR 1012 0 HR 1112 0 HR 1212 0

DM 13 0 21 3 HR 1013 0 HR 1113 0 HR 1213 0
DM 14 0 22 HR 1014 0 HR 1114 0 HR 1214 0
DM 15 0 23 HR 1015 1 HR 1115 0 HR 1215 0

15

6

0

Not
Converted

5-17-8 16-TO-4 ENCODER -- DMPX(77)

SB: First source word

IR, SR, AR, DM, HR, TC, LR

R: Result word

IR, AR, DM, HR, LR

Ladder Symbols

Operand Data Areas

Di: Digit designator

IR, AR, DM, HR, TC, LR, #

DMPX(77)

SB

R

Di

@DMPX(77)

SB

R

Di

The rightmost two digits of Di must each be between 0 and 3.

All source words must be in the same data area.

When the execution condition is OFF, DMPX(77) is not executed. When theexe-
cution condition is ON, DMPX(77) determines the position of the highest ON bit
in S, encodes it into single-digit hexadecimal value corresponding to the bit num-
ber of the highest ON bit number, then transfers the hexadecimal value to the
specified digit in R. The digits to receive the results are specified inDi, whichalso
specifies the number of digits to be encoded.

Example

Limitations

Description

DataConversion Section 5-17

153

The following is an example of a one-digit encode operation to digit number 1 of
R, i.e., here Di would be 0001.

Result word

First source word

C

0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0

C transferred to indicate bit number 12 as
the highest ON bit.

Up to four digits from four consecutive source words starting with S may be en-
coded and the digits written to R in order from the designated first digit. If more
digits are designated than remain in R (counting from the designated first digit),
the remaining digits will be placed at digits starting back at the beginning of R.
The final word to be converted (S plus the number of digits to be converted) must
be in the same data area as SB.

The digits of Di are set as shown below.

Specifies the first digit to receive converted data (0 to 3).

Number of words to be converted (0 to 3)
0: 1 word
1: 2 words
2: 3 words
3: 4 words

Not used.

Digit numbers: 3 2 1 0

Some example Di values and the word-to-digit conversions that they produce
are shown below.

0

1

2

3

R

Di: 0011

S

S + 1
0

1

2

3

S

S + 1

S + 2

S + 3

Di: 0030

R

S

S + 1

S + 2

S + 3

0

1

2

3

Di: 0032
R

Di: 0013

0

1

2

3

S

S + 1

R

Flags ER: Undefined digit designator, or S plus number of digits exceeds a data
area.

Content of a source word is zero.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

When 00000 is ON, the following diagram encodes IR words 010 and 011 to the
first two digits of HR 20 and then encodes LR 10 and 11 to the last two digits of

Digit Designator

Example

DataConversion Section 5-17

154

HR 20. Although the status of each source word bit is not shown, it is assumed
that the bit with status 1 (ON) shown is the highest bit that is ON in the word.

00000
DMPX(77)

010

HR 20

#0010

LR 10

HR 20

#0012

IR 010

01000

:

01011 1

01012 0

: : :

01015 0

LR 10

LR 1000

LR 1001 1

LR 1002 0

: : :

: : :

LR 1015 0

Digit 0

IR 011

01100

:

01109 1

01110 0

: : :

01115 0

Digit 1

Digit 2

Digit 3

B

9

1

8
LR 11

LR 1100

:

LR 1108 1

LR 1109 0

: : :

LR 1115 0

HR 20

DMPX(77)

Address Instruction Operands

00000 LD 00000
00001 DMPX(77)

010
HR 20
0010

00002 DMPX(77)
LR 10
HR 20
0012

5-17-9 7-SEGMENT DECODER -- SDEC(78)

S: Source word (binary)

IR, SR, AR, DM, HR, TC, LR

Di: Digit designator

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: First destination word

IR, AR, DM, HR, LR

SDEC(78)

S

Di

D

@SDEC(78)

S

Di

D

Di must be within the values given below
All destination words must be in the same data area.

When the execution condition is OFF, SDEC(78) is not executed. When the exe-
cution condition is ON, SDEC(78) converts the designated digit(s) of S into the
equivalent 8-bit, 7-segment display code and places it into the destination
word(s) beginning with D.
Any or all of the digits in S may be converted in sequence from the designated
first digit. The first digit, the number of digits to be converted, and the half of D to
receive the first 7-segment display code (rightmost or leftmost 8 bits) are desig-
nated in Di. If multiple digits are designated, they will be placed in order starting
from the designated half of D, each requiring two digits. If more digits are desig-

Limitations

Description

DataConversion Section 5-17

155

nated than remain in S (counting from the designated first digit), further digits will
be used starting back at the beginning of S.

The digits of Di are set as shown below.

Specifies the first digit to receive converted data (0 to 3).

Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First half of D to be used.
0: Rightmost 8 bits (1st half)
1: Leftmost 8 bits (2nd half)

Not used; set to 0.

Digit number: 3 2 1 0

Some example Di values and the 4-bit binary to 7-segment display conversions
that they produce are shown below.

0

1

2

3

S digits

Di: 0011

D

0

1

2

3

Di: 0030

S digits

0

1

2

3

Di: 0130
S digits

Di: 0112

0

1

2

3

S digits

1st half

2nd half

D

1st half

2nd half

D+1

1st half

2nd half

D

1st half

2nd half

D+1

1st half

2nd half

D

1st half

2nd half

D+1

1st half

2nd half

D+2

1st half

2nd half

The following example shows the data to produce an 8. The lower case letters
show which bits correspond to which segments of the 7-segment display. The

Digit Designator

Example

DataConversion Section 5-17

156

table underneath shows the original data and converted code for all hexadeci-
mal digits.

20

21

22

23

20

21

22

23

20

21

22

23

20

21

22

23

0

1

0

0

0

0

0

1

0

1

1

1

1

0

1

1

0

1

2

3

1

1

1

1

1

1

1

0

S

g
f b

c

d

e

aD

0

1

0

0

0

0

0

1

0

1

1

1

1

0

1

1

x100

x101

x102

x103

Di

1: Second digit

0: One digit

0 or 1:
bits 00 through 07 or
08 through 15.

Not used.

a

b

c

d

e

f

g

Bit 00
or
bit 08

Bit 07
or
bit 15

8

Original data Converted code (segments) Display
Digit Bits -- g f e d c b a

0 0 0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 1 0 0 0 0 0 1 1 0

2 0 0 1 0 0 1 0 1 1 0 1 1

3 0 0 1 1 0 1 0 0 1 1 1 1

4 0 1 0 0 0 1 1 0 0 1 1 0

5 0 1 0 1 0 1 1 0 1 1 0 1

6 0 1 1 0 0 1 1 1 1 1 0 1

7 0 1 1 1 0 0 1 0 0 1 1 1

8 1 0 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 0 1 1 0 1 1 1 1

A 1 0 1 0 0 1 1 1 0 1 1 1

B 1 0 1 1 0 1 1 1 1 1 0 0

C 1 1 0 0 0 0 1 1 1 0 0 1

D 1 1 0 1 0 1 0 1 1 1 1 0

E 1 1 1 0 0 1 1 1 1 0 0 1

F 1 1 1 1 0 1 1 1 0 0 0 1

Flags ER: Incorrect digit designator, or data area for destination exceeded

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

DataConversion Section 5-17

157

5-17-10 ASCII CONVERT -- ASC(86)

S: Source word

IR, SR, AR, DM, HR, TC, LR

Di: Digit designator

IR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

D: First destination word

IR, AR, DM, HR, LR

ASC(86)

S

Di

D

@ASC(86)

S

Di

D

Di must be within the values given below
All destination words must be in the same data area.

When the execution condition is OFF, ASC(86) is not executed. When the exe-
cution condition is ON, ASC(86) converts the designated digit(s) of S into the
equivalent 8-bit ASCII code and places it into the destination word(s) beginning
with D.
Any or all of the digits in S may be converted in order from the designated first
digit. The first digit, the number of digits to be converted, and the half of D to re-
ceive the first ASCII code (rightmost or leftmost 8 bits) are designated in Di. If
multiple digits are designated, they will be placed in order starting from the des-
ignated half of D, each requiring two digits. If more digits are designated than
remain in S (counting from the designated first digit), further digits will be used
starting back at the beginning of S.
Refer to Appendix I for a table of extended ASCII characters.

The digits of Di are set as shown below.

Specifies the first digit to be converted (0 to 3).

Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First half of D to be used.
0: Rightmost 8 bits (1st half)
1: Leftmost 8 bits (2nd half)

Parity 0: none,
1: even,
2: odd

Digit number: 3 2 1 0

Limitations

Description

Digit Designator

DataConversion Section 5-17

158

Some examples of Di values and the 4-bit binary to 8-bit ASCII conversions that
they produce are shown below.

0

1

2

3

S

Di: 0011

D

0

1

2

3

Di: 0030

S

0

1

2

3

Di: 0130
S

Di: 0112

0

1

2

3

S

1st half

2nd half

D

1st half

2nd half

D+1

1st half

2nd half

D

1st half

2nd half

D+1

1st half

2nd half

D

1st half

2nd half

D+1

1st half

2nd half

D+2

1st half

2nd half

The leftmost bit of each ASCII character (2 digits) can be automatically adjusted
for either even or odd parity. If no parity is designated, the leftmost bit will always
be zero.
When even parity is designated, the leftmost bit will be adjusted so that the total
number of ON bits is even, e.g., when adjusted for even parity, ASCII “31”
(00110001) will be “B1” (10110001: parity bit turned ON to create an even num-
ber of ON bits); ASCII “36” (00110110) will be “36” (00110110: parity bit turned
OFF because the number of ON bits is already even). The status of the parity bit
does not affect the meaning of the ASCII code.
When odd parity is designated, the leftmost bit of each ASCII character will be
adjusted so that there is an odd number of ON bits.

Flags ER: Incorrect digit designator, or data area for destination exceeded.
Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

5-18 BCD Calculations
The BCD calculation instructions -- INC(38), DEC(39), ADD(30), ADDL(54),
SUB(31), SUBL(55), MUL(32), MULL(56), DIV(33), DIVL(57), FDIV(79), and
ROOT(72) -- all perform arithmetic operations on BCD data.
For INC(38) and DEC(39) the source and result words are the same. That is, the
content of the source word is overwritten with the instruction result. All other in-
structions change only the content of the words in which results are placed, i.e.,
the contents of source words are the same before and after execution of any of
the other BCD calculation instructions.
STC(40) and CLC(41), which set and clear the carry flag, are included in this
group because most of the BCD operations make use of the Carry Flag (CY) in
their results. Binary calculations and shift operations also use CY.
The addition and subtraction instructions include CY in the calculation as well as
in the result. Be sure to clear CY if its previous status is not required in the calcu-

Parity

BCD Calculations Section 5-18

159

lation, and to use the result placed in CY, if required, before it is changed by exe-
cution of any other instruction.

5-18-1 INCREMENT -- INC(38)

Wd: Increment word (BCD)

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

INC(38)

Wd

@INC(38)

Wd

When the execution condition is OFF, INC(38) is not executed. When the execu-
tion condition is ON, INC(38) increments Wd, without affecting Carry (CY).

Flags ER: Wd is not BCD

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the incremented result is 0.

5-18-2 DECREMENT -- DEC(39)

Wd: Decrement word (BCD)

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

DEC(39)

Wd

@DEC(39)

Wd

When the execution condition is OFF, DEC(39) is not executed. When the exe-
cution condition is ON, DEC(39) decrements Wd, without affecting CY. DEC(39)
works the same way as INC(38) except that it decrements the value instead of
incrementing it.

Flags ER: Wd is not BCD

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the decremented result is 0.

5-18-3 SET CARRY -- STC(40)

Ladder Symbols

STC(40) @STC(40)

When the execution condition is OFF, STC(40) is not executed.When theexecu-
tion condition is ON, STC(40) turns ON CY (SR 25504).

5-18-4 CLEAR CARRY -- CLC(41)

Ladder Symbols

CLC(41) @CLC(41)

Description

Description

BCD Calculations Section 5-18

160

When the execution condition is OFF, CLC(41) is not executed.When theexecu-
tion condition is ON, CLC(41) turns OFF CY (SR 25504).
CLEAR CARRY is used to reset (turn OFF) CY (SR 25504) to “0.”

5-18-5 BCD ADD -- ADD(30)

Au: Augend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ad: Addend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

ADD(30)

Au

Ad

R

@ADD(30)

Au

Ad

R

When the execution condition is OFF, ADD(30) is not executed. When the exe-
cution condition is ON, ADD(30) adds the contents of Au, Ad, andCY, andplaces
the result in R. CY will be set if the result is greater than 9999.

Au + Ad + CY CY R

Flags ER: Au and/or Ad is not BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.

EQ: ON when the result is 0.

If 00002 is ON, the program represented by the following diagram clears CY with
CLC(41), adds the content of LR 25 to a constant (6103), places the result in DM
0100, and then moves either all zeros or 0001 into DM 0101 depending on the
status of CY (25504). This ensures that any carry from the last digit is preserved
in R+1 so that the entire result can be later handled as eight-digit data.

TR 0

MOV(21)

#0001

DM 0101

00002
CLC(41)

ADD(30)

LR 25

#6103

DM 0100

MOV(21)

#0000

DM 0101

25504

25504

Address Instruction Operands

00000 LR 00002
00001 OUT TR 0
00002 CLC(41)
00003 AND(30)

LR 25
6103
DM 0100

00004 AND 25504
00005 MOV(21)

0001
DM 0101

00006 LD TR 0
00007 AND NOT 25504
00008 MOV(21)

0000
DM 0101

Although two ADD(30) can be used together to perform eight-digit BCDaddition,
ADDL(54) is designed specifically for this purpose.

Description

Example

BCD Calculations Section 5-18

161

5-18-6 DOUBLE BCD ADD -- ADDL(54)

Au: First augend word (BCD)

IR, SR, AR, DM, HR, TC, LR

Ad: First addend word (BCD)

IR, SR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR, LR

ADDL(54)

Au

Ad

R

@ADDL(54)

Au

Ad

R

When the execution condition is OFF, ADDL(54) is not executed. When the exe-
cution condition is ON, ADDL(54) adds the contents of CY to the 8-digit value in
Au and Au+1 to the 8-digit value in Ad and Ad+1, and places the result in R and
R+1. CY will be set if the result is greater than 99999999.

Au + 1 Au

Ad + 1 Ad

R + 1 R

+ CY

CY

Flags ER: Au and/or Ad is not BCD.
Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.
EQ: ON when the result is 0.

When 00000 is ON, the following program adds two 12-digit numbers, the first
contained in LR 20 through LR 22 and the second in DM 0012. The result is
placed in LR 10 through HR 13. In the second addition (using ADD(30)), any
carry from the first addition is included. The carry from the second addition is
placed in HR 13 by using @ADB(50) (see 5-19-1 BINARY ADD -- ADB(50)) with
two all-zero constants to indirectly place the content of CY into HR 13.

@ADDL(54)

LR 20

DM 0010

HR 10

CLC(41)

00000

@ADD(30)

LR 22

DM 0012

HR 12

@ADB(50)

#0000

#0000

HR 13

Address Instruction Operands

00000 LD 00000
00001 CLC(41)
00002 @ADDL(54)

LR 20
DM 0010
HR 10

00003 @ADD(30)
LR 22
DM 0012
HR 12

00004 @ADB(50)
0000
0000
HR 13

Description

Example

BCD Calculations Section 5-18

!

162

5-18-7 BCD SUBTRACT -- SUB(31)

Mi: Minuend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Su: Subtrahend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

SUB(31)

Mi

Su

R

@SUB(31)

Mi

Su

R

When the execution condition is OFF, SUB(31) is not executed. When the exe-
cution condition is ON, SUB(31) subtracts the contents of Su and CY from Mi,
and places the result in R. If the result is negative, CY is set and the 10’s comple-
ment of the actual result is placed in R. To convert the 10’s complement to the
true result, subtract the content of R from zero (see example below).

Mi -- Su -- CY CY R

Flags ER: Mi and/or Su is not BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is negative, i.e., when Mi is less than Su plus CY.

EQ: ON when the result is 0.

Caution Be sure to clear the carry flag with CLC(41) before executing SUB(31) if its previ-
ous status is not required, and check the status of CY after doing a subtraction
with SUB(31). If CY is ON as a result of executing SUB(31) (i.e., if the result is
negative), the result is output as the 10’s complement of the true answer. To con-
vert the output result to the true value, subtract the value in R from 0.

When 00002 is ON, the following ladder program clears CY, subtracts the con-
tents of DM 0100 and CY from the content of 010 and places the result in HR 20.

If CY is set by executing SUB(31), the result in HR 20 is subtracted from zero
(note that CLC(41) is again required to obtain an accurate result), the result is
placed back in HR 20, and HR 2100 is turned ON to indicate a negative result.

If CY is not set by executing SUB(31), the result is positive, the second subtrac-
tion is not performed, and HR 2100 is not turned ON. HR 2100 is programmedas
a self-maintaining bit so that a change in the status of CY will not turn it OFF
when the program is recycled.

In this example, differentiated forms of SUB(31) are used so that the subtraction
operation is performed only once each time 00002 is turned ON. When another

Description

Example

BCD Calculations Section 5-18

163

subtraction operation is to be performed, 00002 will need to be turned OFF for at
least one cycle (resetting HR 2100) and then turned back ON.

CLC(41)

@SUB(31)

010

DM 0100

HR 20

CLC(41)

@SUB(31)

#0000

HR 20

HR 21

TR 0

25504
HR 2100

00002

25504

HR 2100

First
subtraction

Second
subtraction

Turned ON to indicate
negative result.

00000 LD 00002
00001 OUT TR 0
00002 CLC(41)
00003 @SUB(31)

010
DM 0100
HR 20

00004 AND 25504
00005 CLC(41)
00006 @SUB(31)

0000
HR 20
HR 20

00007 LD TR 0
00008 AND 25504
00009 OR HR 2100
00010 OUT HR 2100

Address Instruction Operands

The first and second subtractions for this diagram are shown below using exam-
ple data for 010 and DM 0100.

Note The actual SUB(31) operation involves subtracting Su and CY from 10,000 plus
Mi. For positive results the leftmost digit is truncated. For negative results the
10s complement is obtained. The procedure for establishing the correct answer
is given below.

First Subtraction
IR 010 1029
DM 0100 -- 3452
CY -- 0
HR 20 7577 (1029 + (10000 -- 3452))
CY 1 (negative result)
Second Subtraction

0000
HR 20 --7577
CY --0
HR 20 2423 (0000 + (10000 -- 7577))
CY 1 (negative result)

In the above case, the program would turn ON HR 2100 to indicate that the value
held in HR 20 is negative.

BCD Calculations Section 5-18

164

5-18-8 DOUBLE BCD SUBTRACT -- SUBL(55)

Mi: First minuend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Su: First subtrahend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR, LR

SUBL(55)

Mi

Su

R

@SUBL(55)

Mi

Su

R

When the execution condition is OFF, SUBL(55) is not executed. When the exe-
cution condition is ON, SUBL(55) subtracts CY and the 8-digit contents of Su
and Su+1 from the 8-digit value in Mi and Mi+1, and places the result in R and
R+1. If the result is negative, CY is set and the 10’s complement of the actual
result is placed in R. To convert the 10’s complement to the true result, subtract
the content of R from zero. Since an 8-digit constant cannot be directly entered,
use the BSET(71) instruction (see 5-15-5 BLOCK SET -- BSET(71)) to createan
8-digit constant.

Mi + 1 Mi

Su + 1 Su

R + 1 R

-- CY

CY

Flags ER: Mi, M+1,Su, or Su+1 are not BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is negative, i.e., when Mi is less than Su.

EQ: ON when the result is 0.

The following example works much like that for single-word subtraction. In this
example, however, BSET(71) is required to clear the content of DM 0000 and

Description

BCD Calculations Section 5-18

165

DM 0001 so that a negative result can be subtracted from 0 (inputting an 8-digit
constant is not possible).

CLC(41)

@SUBL(55)

HR 20

120

DM 0100

CLC(41)

@SUBL(55)

DM 0000

DM 0100

DM 0100

TR 0

25504
HR 2100

00003

25504

HR 2100

First
subtraction

Second
subtraction

Turned ON to indicate
negative result.

@BSET(71)

#0000

DM 0000

DM 0001

00000 LD 00003
00001 OUT TR 0
00002 CLC(41)
00003 @SUBL(55)

HR 20
120

DM 0100
00004 AND 25504
00005 @BSET(71)

0000
DM 0000
DM 0001

00006 CLC(41)
00007 @SUBL(55)

DM 0000
DM 0100
DM 0100

00008 LD TR 0
00009 AND 25504
00010 OR HR 2100
00011 OUT HR 2100

Address Instruction Operands Address Instruction Operands

5-18-9 BCD MULTIPLY -- MUL(32)

Md: Multiplicand (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Mr: Multiplier (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

MUL(32)

Md

Mr

R

@MUL(32)

Md

Mr

R

Example

BCD Calculations Section 5-18

166

When the execution condition is OFF, MUL(32) is not executed. When the exe-
cution condition is ON, MUL(32) multiplies Md by the content of Mr, and places
the result In R and R+1.

Md

Mr

R +1 R

X

When IR 00000 is ON with the following program, the contents of IR 013 and DM
0005 are multiplied and the result is placed in HR 07 and HR 08. Example data
and calculations are shown below the program.

MUL(32)

013

DM 0005

HR 07

00000

R+1: HR 08 R: HR 07
0 0 0 8 3 9 0 0

Md: IR 013
3 3 5 6

Mr: DM 0005
0 0 2 5

X

Address Instruction Operands

00000 LD 00000
00001 MUL(32)

013
DM 00005
HR 07

Flags ER: Md and/or Mr is not BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.

EQ: ON when the result is 0.

5-18-10 DOUBLE BCD MULTIPLY -- MULL(56)

Md: First multiplicand word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Mr: First multiplier word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

MULL(56)

Md

Mr

R

@MULL(56)

Md

Mr

R

Description

Example

BCD Calculations Section 5-18

167

When the execution condition is OFF, MULL(56) is not executed. When the exe-
cution condition is ON, MULL(56) multiplies the eight-digit content of Md and
Md+1 by the content of Mr and Mr+1, and places the result in R to R+3.

Md + 1 Md

Mr + 1 Mr

R + 1 RR + 1 R + 2

x

Flags ER: Md, Md+1,Mr, or Mr+1 is not BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when there is a carry in the result.

EQ: ON when the result is 0.

5-18-11 BCD DIVIDE -- DIV(33)

Dd: Dividend word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbol

Dr: Divisor word (BCD)

IR, SR, AR, DM, HR, TC, LR, #

Operand Data Areas

DIV(33)

Dd

Dr

R

R: First result word (BCD)

IR, AR, DM, HR, LR

R and R+1 must be in the same data area.

When the execution condition is OFF, DIV(33) is not executed and the program
moves to the next instruction. When the execution condition is ON, Dd is divided
by Dr and the result is placed in R and R + 1: the quotient in R and the remainder
in R + 1.

R+1 R

DdDr

QuotientRemainder

Flags ER: Dd or Dr is not in BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Description

Limitations

Description

BCD Calculations Section 5-18

168

When IR 00000 is ON with the following program, the content of IR 020 is divided
by the content of HR 09 and the result is placed in DM 0017 andDM 0018. Exam-
ple data and calculations are shown below the program.

DIV(33)

020

HR 09

DM 0017

00000

R: DM 0017 R + 1: DM 0018
1 1 5 0 0 0 0 2

Dd: IR 020
3 4 5 2

Quotient Remainder

Dd: HR 09
0 0 0 3

Address Instruction Operands

00000 LD 00000
00001 DIV(33)

020
HR 09
DM 0017

5-18-12 DOUBLE BCD DIVIDE -- DIVL(57)

Dd: First dividend word (BCD)

IR, SR, AR, DM, HR, TC, LR

Dr: First divisor word (BCD)

IR, SR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

DIVL(57)

Dd

Dr

R

@DIVL(57)

Dd

Dr

R

When the execution condition is OFF, DIVL(57) is not executed. When the exe-
cution condition is ON, DIVL(57) the eight-digit content of Dd and D+1 is divided
by the content of Dr and Dr+1 and the result is placed in R to R+3: the quotient in
R and R+1, the remainder in R+2 and R+3.

R+1 R

QuotientRemainder

Dd+1 DdDr+1 Dr

R+3 R+2

Flags ER: Dr and Dr+1 contain 0.

Dd, Dd+1, Dr, or Dr+1 is not BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Example

Description

BCD Calculations Section 5-18

169

5-18-13 FLOATING POINT DIVIDE -- FDIV(79)

Dd: First dividend word (BCD)

IR, SR, AR, DM, HR, TC, LR

Dr: First divisor word (BCD)

IR, SR, AR, DM, HR, TC, LR

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

FDIV(79)

Dd

Dr

R

@FDIV(79)

Dd

Dr

R

Dr and Dr+1 cannot contain zero. Dr and Dr+1 must be in the same data area, as
must Dd and Dd+1; R and R+1.

When the execution condition is OFF, FDIV(79) is not executed. When the exe-
cution condition is ON, FDIV(79) divides the floating-point value in Dd and Dd+1
by that in Dr and Dr+1 and places the result in R and R+1.

R+1 R

Quotient

Dd+1 DdDr+1 Dr

To represent the floating point values, the rightmost seven digits are used for the
mantissa and the leftmost digit is used for the exponent, as shown below. The
mantissa is expressed as a value less than one, i.e., to seven decimal places.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
First word

exponent (0 to 7)
sign of exponent 0: +

1: --

1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

mantissa (leftmost 3 digits)

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
Second word

mantissa (leftmost 4 digits)

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

= 0.1111111 x 10--2

Flags ER: Dr and Dr+1 contain 0.

Dd, Dd+1, Dr, or Dr+1 is not BCD.

The result is not between 0.0000001 x 10--7 and 0.999999 x 10+7.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

The following example shows how to divide two whole four-digit numbers (i.e.,
numbers without fractions) so that a floating-point value can be obtained.

Limitations

Description

Example

BCD Calculations Section 5-18

170

First the original numbers must be placed in floating-point form. Because the
numbers are originally without decimal points, the exponent will be 4 (e.g., 3452
would equal 0.3452 x 104). All of the moves are to place the proper data into con-
secutive words for the final division, including the exponent and zeros. Data
movements for Dd and Dd+1 are shown at the right below. Movements for Dr
and Dr+1 are basically the same.The original values to be divided are in DM
0000 and DM 0001. The final division is also shown.

BCD Calculations Section 5-18

171

DM 0000
3 4 5 2

@MOV(21)

#0000

HR 00

00000

@MOV(21)

#0000

HR 02

@MOV(21)

#4000

HR 01

@MOV(21)

#4000

HR 03

@MOVD(83)

DM 0000

#0021

HR 01

@MOVD(83)

DM 0000

#0300

HR 00

@MOVD(83)

DM 0001

#0021

HR 03

@MOVD(83)

DM 0001

#0300

HR 02

@FDIV(79)

HR 00

HR 02

DM 0002

HR 01 HR 00
0 0 0 0

0000

HR 01 HR 00
4 0 0 0 0 0 0 0

4000

HR 01 HR 00
4 3 4 5 0 0 0 0

DM 0000
3 4 5 2

HR 01 HR 00
4 3 4 5 2 0 0 0

HR 01 HR 00
4 3 4 5 2 0 0 0

HR 03 HR 02
4 0 0 7 9 0 0 0

DM 0003 DM 0002
2 4 3 6 9 6 2 0

(

0.4369620 x 102

00000 LD 00000
00001 @MOV(21)

0000
HR 00

00002 @MOV(21)
0000
HR 02

00003 @MOV(21)
4000
HR 01

00004 @MOV(21)
4000
HR 03

00005 @MOVD(83)
DM 0000
0021
HR 01

00006 @MOVD(83)
DM 0000
0300
HR 00

00007 @MOVD(83)
DM 0001
0021
HR 03

00008 @MOVD(83)
DM 0001
0300
HR 02

00009 @FDIV(79)
HR 00
HR 02
DM 0002

Address Instruction Operands Address Instruction Operands

BCD Calculations Section 5-18

172

5-18-14 SQUARE ROOT -- ROOT(72)

Sq: First source word (BCD)

IR, SR, AR, DM, HR, TC, LR

R: Result word

IR, AR, DM, HR, LR,

Ladder Symbols Operand Data Areas

ROOT(72)

Sq

R

@ROOT(72)

Sq

R

When the execution condition is OFF, ROOT(72) is not executed. When theexe-
cution condition is ON, ROOT(72) computes the square root of the eight-digit
content of Sq and Sq+1 and places the result in R. The fractional portion is trun-
cated.

R

Sq+1 Sq

Flags ER: Sq is not BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

The following example shows how to take the square root of a four-digit number
and then round the result.
First the words to be used are cleared to all zeros and then the value whose
square root is tobe taken is moved to Sq+1. The result, which has twice thenum-
ber of digits required for the answer (because the number of digits in the original
value was doubled), is placed in DM 0102, and the digits are split into two differ-
ent words, the leftmost two digits to IR 011 for the answer and the rightmost two
digits to DM 0103 so that the answer in IR 011 can be rounded up if required. The
last step is to compare the value in DM 0103 so that IR 011 can be incremented
using the Greater Than flag.
In this example,)6017 = 77.56, and 77.56 is rounded off to 78.

Description

Example

BCD Calculations Section 5-18

173

010
6 0 1 7

00000

@MOV(21)

010

DM 0101

@ROOT(72)

DM 0100

DM 0102

@MOV(21)

#0000

011

@MOVD(83)

DM 0102

#0012

011

@MOVD(83)

DM 0102

#0210

DM 0103

@CMP(20)

DM 0103

#4900

@INC(38)

011

DM 0101 DM 0100
0 0 0 0 0 0 0 0

0000

DM 0101 DM 0100
6 0 1 7 0 0 0 0

DM 0102
7 7 5 6

IR 011 DM 0103
0 0 7 7 5 6 0 0

@BSET(71)

#0000

DM 0100

DM 0101

@MOV(21)

#0000

DM 0103

0000

60170000 = 7756.932

DM 0103 IR 011
0 0 0 0 0 0 0 0

00000000

25505

5600 > 4900

IR 011
0 0 7 8

Address Instruction Operands Address Instruction Operands

00000 LD 00000
00001 @BSET(71)

0000
DM 0100
DM 0101

00002 @MOV(21)
010

DM 0101
00003 @ROOT(72)

DM 0100
DM 0102

00004 @MOV(21)
0000

011
00005 @MOV(21)

0000
DM 0103

00006 @MOVD(83)
DM 0102
0012

011
00007 @MOVD(83)

DM 0102
0210
DM 0103

00008 @CMP(20)
DM 0103
4900

00009 LD 25505
00010 @INC(38)

011

BCD Calculations Section 5-18

174

5-19 Binary Calculations
The binary calculation instructions -- ADB(50), SBB(51), MLB(52) and DVB(53)
-- all perform arithmetic operations on hexadecimal data.
The addition and subtraction instructions include CY in the calculation as well as
in the result. Be sure to clear CY if its previous status is not required in the calcu-
lation, and to use the result placed in CY, if required, before it is changed by the
execution of any other instruction. STC(40) and CLC(41) can be used to control
CY. Refer to 5-18 BCD Calculations.

5-19-1 BINARY ADD -- ADB(50)

Au: Augend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ad: Addend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

ADB(50)

Au

Ad

R

@ADB(50)

Au

Ad

R

When the execution condition is OFF, ADB(50) is not executed. When the ex-
ecution condition is ON, ADB(50) adds the contents of Au, Ad, and CY, and
places the result in R. CY will be set if the result is greater than FFFF.

Au + Ad + CY CY R

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is greater than FFFF.

EQ: ON when the result is 0.

Examples The following example shows a four-digit addition with CY used to place either
#0000 or #0001 into R+1 to ensure that any carry is preserved.

CLC(41)

00000

ADB(50)

010

DM 0100

HR 10

MOV(21)

#0000

HR 11

MOV(21)

#0001

HR 11

TR 0

25504

25504

= R

= R+1

= R+1

Address Instruction Operands

00000 LD 00000
00001 OUT TR 0
00002 CLC(41)
00003 ADB(50)

010
DM 0100
HR 10

00004 AND NOT 25504
00005 MOV(21)

0000
HR 11

00006 LD TR 0
00007 AND 25504
00008 MOV(21)

00001
HR 11

Description

BinaryCalculations Section 5-19

175

In the case below, A6E2 + 80C5 = 127A7. The result is a 5-digit number, so CY
(SR 25504) = 1, and the content of R + 1 becomes #0001.

R+1: HR 11 R: HR 10
0 0 0 1 2 7 A 7

Au: IR 010
A 6 E 2

Ad: DM 0100
8 0 C 5

+

The following example performs eight-digit addition by using ADB(50) twice.
ADB(50) is also used to place the carry into DM 0302 (one word greater than the
rest of the answer). The complete answer thus ends up in DM 0300 through DM
0302.

CLC(41)

00000

@ADB(50)

LR 20

DM 0200

DM 0300

@ADB(50)

LR 21

DM 0201

DM 0301

@ADB(50)

#0000

#0000

DM 0302

Address Instruction Operands

00000 LD 00000
00001 CLC(41)
00002 @ADB(50)

LR 20
DM 0200
DM 0300

00003 @ADB(50)
LR 21
DM 0201
DM 0301

00004 @ADB(50)
0000
0000
DM 0302

In the case below, 4F52A6E2 + EC3B80C5 = 13B8E27A7. The sum of the lower
4-digit addition is a 5-digit number, so CY (SR 25504) = 1, and the sum of the
higher 4-digit addition is incremented by 1.

R: DM 0300
2 7 A 7

Au: LR 20
A 6 E 2

Ad: DM 0200
8 0 C 5

+

R: DM 0301
3 B 8 E

Au: LR 21
4 F 5 2

Ad: DM 0201
E C 3 B

+
CY = 1

Lower 4 digits. Higher 4 digits.

CY = 1

R+2: DM 0302 R+1: DM 0301 R: DM 0300
0 0 0 1 3 B 8 E 2 7 A 7

BinaryCalculations Section 5-19

176

5-19-2 BINARY SUBTRACT -- SBB(51)

Mi: Minuend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Su: Subtrahend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

SBB(51)

Mi

Su

R

@SBB(51)

Mi

Su

R

When the execution condition is OFF, SBB(51) is not executed. When the ex-
ecution condition is ON, SBB(51) subtracts the contents of Su and CY from Mi
and places the result in R. If the result is negative, CY is set and the 2’s comple-
ment of the actual result is placed in R.

Mi -- Su -- CY CY R

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

CY: ON when the result is negative, i.e., when Mi is less than Su plus CY.

EQ: ON when the result is 0.

Example The following example shows eight-digit subtraction. CY is tested following the
first two subtractions to see if the result is negative. If it is, the first result is sub-
tracted from zero to obtain the true result, which is placed in HR 10 and HR 11,

Description

BinaryCalculations Section 5-19

177

and either #0000 or #0001 is placed in HR 12 (0001 indicates a negative an-
swer).

CLC(41)

00000

SBB(51)

010

DM 0100

HR 10

MOV(21)

#0000

HR 12

MOV(21)

#0001

HR 12

TR 0

25504

25504

SBB(51)

011

DM 0101

HR 11

CLC(41)

25504

SBB(51)

#0000

HR 10

HR 10

SBB(51)

#0000

HR 11

HR 11

Address Instruction Operands

00000 LD 00000
00001 OUT TR 0
00002 CLC(41)
00003 SBB(51)

010
DM 0100
HR 10

00004 SBB(51)
011

DM 0101
HR 11

00005 AND 25505
00006 CLC(41)
00007 SBB(51)

0000
HR 10
HR 10

00008 SBB(51)
0000
HR 11
HR 11

00009 LD TR 0
00010 AND NOT 25504
00011 MOV(21)

0000
HR 12

00012 LD TR 0
00013 AND 25504
00014 MOV(21)

0000
HR 12

In the case below, 20F55A10 -- B8A360E3 = 97AE06D3. In the the lower 4-digit
subtraction, Su > Mi, so CY(SR 25504) becomes 1, and the result of the higher
4-digit subtraction is decremented by 1. In the final calculations, #0000 -- F9D2 =
0000 + (10000 -- F9D2) = 06D3.

BinaryCalculations Section 5-19

178

#0000 -- 6851 --1 (from CY = 1) = 0000 + (10000 -- 6851 -- 1) = 97AE.
The content of HR 12, #0001, indicates a negative result.

R: HR 10
F 9 2 D

Mi: IR 010
5 A 1 0

Su: DM 0100
6 0 E 3

--

R: HR 11
6 8 5 1

Mi: IR 011
2 0 F 5

Su: DM 0101
B 8 A 3

--

CY = 1

Lower 4 digits. Higher 4 digits.

CY = 1

R+2: HR 12 R+1: HR 11 R: HR 10
0 0 0 1 9 7 A E 0 6 D 3

5A10 + (10000 -- 60E3)

-- 0 0 0 10 0 0 0--

20F5 + (10000 -- B8A3) -- 1

CY = 0
(from CLC(41))

5-19-3 BINARY MULTIPLY -- MLB(52)

Md: Multiplicand word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Mr: Multiplier word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

MLB(52)

Md

Mr

R

@MLB(52)

Md

Mr

R

When the execution condition is OFF, MLB(52) is not executed. When the ex-
ecution condition is ON, MLB(52) multiplies the content of Md by the contents of
Mr, places the rightmost four digits of the result in R, and places the leftmost four
digits in R+1.

Md

Mr

R +1 R

X

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Description

BinaryCalculations Section 5-19

179

5-19-4 BINARY DIVIDE -- DVB(53)

Dd: Dividend word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Dr: Divisor word (binary)

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: First result word

IR, AR, DM, HR LR

DVB(53)

Dd

Dr

R

@DVB(53)

Dd

Dr

R

When the execution condition is OFF, DVB(53) is not executed. When the ex-
ecution condition is ON, DVB(53) divides the content of Dd by the content of Dr
and the result is placed in R and R+1: the quotient in R, the remainder in R+1.

DdDr

R R + 1

Quotient Remainder

Flags ER: Dr contains 0.
Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-20 Logic Instructions
The logic instructions -- COM(29), ANDW(34), ORW(35), XORW(36), and
XNRW(37) -- perform logic operations on word data.

5-20-1 COMPLEMENT -- COM(29)

Wd: Complement word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

COM(29)

Wd

@COM(29)

Wd

When the execution condition is OFF, COM(29) is not executed. When the ex-
ecution condition is ON, COM(29) clears all ON bits and sets all OFF bits in Wd.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

15 00

15 00

Original

Complement

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Description

Description

Example

LogicInstructions Section 5-20

180

5-20-2 LOGICAL AND -- ANDW(34)

I1: Input 1

IR, SR, AR, DM, HR, TC, LR, #

I2: Input 2

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

ANDW(34)

I1

I2

R

@ANDW(34)

I1

I2

R

When the execution condition is OFF, ANDW(34) is not executed. When the ex-
ecution condition is ON, ANDW(34) logically AND’s the contents of I1 and I2
bit-by-bit and places the result in R.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

15 00

15 00

I1

I2

R

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-20-3 LOGICAL OR -- ORW(35)

I1: Input 1

IR, SR, AR, DM, HR, TC, LR, #

I2: Input 2

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

ORW(35)

I1

I2

R

@ORW(35)

I1

I2

R

Description

Example

LogicInstructions Section 5-20

181

When the execution condition is OFF, ORW(35) is not executed. When the ex-
ecution condition is ON, ORW(35) logically OR’s the contents of I1 and I2
bit-by-bit and places the result in R.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1

15 00

15 00

I1

I2

R

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-20-4 EXCLUSIVE OR -- XORW(36)

I1: Input 1

IR, SR, AR, DM, HR, TC, LR, #

I2: Input 2

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

XORW(36)

I1

I2

R

@XORW(36)

I1

I2

R

When the execution condition is OFF, XORW(36) is not executed. When the ex-
ecution condition is ON, XORW(36) exclusively OR’s the contents of I1 and I2
bit-by-bit and places the result in R.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

15 00

15 00

I1

I2

R

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

Description

Example

Description

Example

LogicInstructions Section 5-20

182

5-20-5 EXCLUSIVE NOR -- XNRW(37)

I1: Input 1

IR, SR, AR, DM, HR, TC, LR, #

I2: Input 2

IR, SR, AR, DM, HR, TC, LR, #

Ladder Symbols

Operand Data Areas

R: Result word

IR, AR, DM, HR, LR

XNRW(37)

I1

I2

R

@XNRW(37)

I1

I2

R

When the execution condition is OFF, XNRW(37) is not executed. When the ex-
ecution condition is ON, XNRW(37) exclusively NOR’s the contents of I1 and I2
bit-by-bit and places the result in R.

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

15 00

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

15 00

15 00

I1

I2

R

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-21 Subroutines and Interrupt Control

5-21-1 Overview
Subroutines break large control tasks into smaller ones and enable you to reuse
a given set of instructions. When the main program calls a subroutine, control is
transferred to the subroutine and the subroutine instructions are executed. The
instructions within a subroutine are written in the same way as main program
code. When all the subroutine instructions have been executed, control returns
to the main program to the point just after the point from which the subroutine
was entered (unless otherwise specified in the subroutine).
Subroutines may also beactivated by interrupts. Likesubroutine calls, interrupts
cause a break in the flow of the main program execution such that the flow can
be resumed from that point after completion of the subroutine. An interrupt is
caused either by an external source, such as an input signal from an Interrupt
Input Unit, or a scheduled interrupt. In the case of the scheduled interrupt, the
interrupt signal is repeated at regular intervals.
Whereas subroutine calls are controlled from within the main program, subrou-
tines activated by interrupts are triggered when the interrupt signal is received.
Also, multiple interrupts from different Interrupt Input Units can occur at the
same time. To effectively deal with this, the PC employs a priority scheme for
handling interrupts.

Description

SubroutinesandInterruptControl Section 5-21

183

In the case of the scheduled interrupt, the time interval between interrupts is set
by the user and is unrelated to the cycle timing of the PC. This capability is useful
for periodic supervisory or executive program execution.
INT(89) is used to control the interrupt signals received from the Interrupt Input
Units, and also to control the scheduling of the scheduled interrupt. INT(89) pro-
vides such functions as masking of interrupts (so that they are recorded but ig-
nored) and clearing of interrupts.

5-21-2 SUBROUTINE DEFINE and RETURN -- SBN(92)/RET(93)

N: Subroutine number

(00 to 99)

Ladder Symbols Definer Data Areas

SBN(92) N

RET(93)

Each subroutine number can be used in SBN(92) once only, i.e., up to 100 sub-
routines may be programmed. Subroutine numbers 00 through 31 are used by
Interrupt Input Units and subroutine number 99 is used for the scheduled inter-
rupt. Refer to 5-21-4 INTERRUPT CONTROL -- INT(89) for details.

SBN(92) is used to mark the beginning of a subroutine program; RET(93) is
used to mark the end. Each subroutine is identified with a subroutine number, N,
that is programmed as a definer for SBN(92). This same subroutine number is
used in any SBS(91) that calls the subroutine (see next subsection). No subrou-
tine number is required with RET(93).
All subroutines must be programmed at the end of the main program. When one
or more subroutines have been programmed, the main program will be ex-
ecuted up to the first SBN(92) before returning to address 00000 for the next
cycle. Subroutines will not be executed unless called by SBS(91) or activated by
an interrupt.
END(01) must be placed at the end of the last subroutine program, i.e., after the
last RET(93). It is not required at any other point in the program. (Refer to the
next subsection for further details.)

Precautions If SBN(92) is mistakenly placed in the main program, it will inhibit program ex-
ecution past that point, i.e., program execution will return to the beginning when
SBN(92) is encountered.
If either DIFU(13) or DIFU(14) is placed within a subroutine, the operand bit will
not be turned OFF until the next time the subroutine is executed, i.e., the oper-
and bit may stay ON longer than one cycle.

Flags There are no flags directly affected by these instructions.

5-21-3 SUBROUTINE ENTER -- SBS(91)

N: Subroutine number

(00 to 99)

Ladder Symbol Definer Data Areas

SBS(91) N

Description A subroutine can be executed by placing SBS(91) in the main program at the
point where the subroutine is desired. The subroutine number used in SBS(91)
indicates the desired subroutine. When SBS(91) is executed (i.e., when the ex-

Limitations

Description

SubroutinesandInterruptControl Section 5-21

184

ecution condition for it is ON), the instructions between the SBN(92) with the
same subroutine number and the first RET(93) after it are executed before ex-
ecution returns to the instruction following the SBS(91) that made the call.

SBS(91) 00

SBN(92) 00

RET(93)

END(01)

Main program

Subroutine

Main program

SBS(91) may be used as many times as desired in the program, i.e., the same
subroutine may be called from different places in the program).
SBS(91) may also be placed into a subroutine to shift program execution from
one subroutine to another, i.e., subroutines may be nested. When the second
subroutine has been completed (i.e., RET(93) has been reached), program ex-
ecution returns to the original subroutine which is then completed before return-
ing to the main program. Nesting is possible to up to sixteen levels. A subroutine
cannot call itself (e.g., SBS(91) 00 cannot be programmed within the subroutine
defined with SBN(92) 00). The following diagram illustrates two levels of nesting.

SBN(92) 10 SBN(92) 11 SBN(92) 12

SBS(91) 11

RET(93)

SBS(91) 10 SBS(91) 12

RET(93) RET(93)

Although subroutines 00 through 31 can be called by using SBS(91), they are
also activated by interrupt signals from Interrupt Input Units. Subroutine 99,
which can also be called using SBS(91), is used for the scheduled interrupt. (Re-
fer to the next subsection for details.)

SubroutinesandInterruptControl Section 5-21

!

!

185

The following diagram illustrates program execution flow for various execution
conditions for two SBS(91).

SBS(91) 00

SBS(91) 01

SBN(92) 00

RET(93)

SBN(92) 01

RET(93)

END(01)

Main
program

Subroutines

A

B

C

D

E

A

A

A

A

B

B

B

B

C

C

C

C

D

D

E

E

OFF execution conditions for
subroutines 00 and 01

ON execution condition for
subroutine 00 only

ON execution condition for
subroutine 01 only

ON execution conditions for
subroutines 00 and 01

Flags ER: A subroutine does not exist for the specified subroutine number.

A subroutine has called itself.

Subroutines have been nested to more than sixteen levels.

Caution SBS(91) will not be executed and the subroutine will not be called when ER is
ON.

5-21-4 INTERRUPT CONTROL -- INT(89)

CC: Control code

(000 to 002)

N: Interrupt designator

(004)

Ladder Symbols

Operand Data Areas

D: Control data

IR, AR, DM, HR, TC, LR, TR, #

INT(89)

CC

N

D

@INT(89)

CC

N

D

Limitations D may be a constant only when CC is 000 or 001. D must be a word address
when CC is 002. See below for details. INT(89) is used only to control the sched-
uled interrupts with the C200H and N must be set to 0004.

Caution INT(89) cannot be used during execution of step programs or in C2000H Duplex
CPUs. Refer to 5-22 Step Instructions for details on step programs.

SubroutinesandInterruptControl Section 5-21

!

!

186

INT(89) is used to control the scheduled interrupt. Subroutine 99 can be estab-
lished so that it will be executed repeatedly at a fixed interval through scheduled
interrupts.The actual time at which it is executed is independent of the cycle
time. INT(89) is used to control the scheduled interrupt. If N is 004, CC is used to
designate the desired function as follows:

CC = 000: Setting time interval
001: Setting the time to first scheduled interrupt
002: Reading the current time interval

Even when a subroutine 99 has been written, it will not be executed according to
scheduled interrupts unless INT(89) is used to set the proper times. INT(89)
should be used to set both the time interval (CC = 000) for the scheduled inter-
rupt and the time to the first scheduled interrupt (CC = 001. Unstable operation
may result is the time to the first interrupt is not set.

To set the time interval for the scheduled interrupt, set CC to 000and set D toany
value between 00.01 and 99.99 seconds. The decimal point is not input. The
time interval can be changed at any time.

To cancel the scheduled interrupt, set the time interval to 00.00 seconds.

Caution If the scheduled execution time of the subroutine becomes too large, it will have
a serious effect on the overall execution time of the main program. Therefore,
you should take extra care to write a subroutine that is fast and efficient. INT(89),
with a CC of 000, is used to change the scheduled interrupt time interval, thenew
time interval is not effective until after the next scheduled interrupt. (cf. CC = 001
below)

To set the time to the first interrupt, set CC to 001 and set D to any value between
00.01 and 99.99 seconds. The decimal point is not entered. If D is set to 00.00,
the interrupt will not occur.

Caution INT(89), with a CC code of 001, can be used to change the scheduled interrupt
time interval for one cycle. The new time interval is effective immediately. The
scheduled interrupt may never actually occur if the time to the first interrupt is
changed repeatedly, i.e., before the interrupt has time to occur.

To access the current time interval for the scheduled interrupt, set CC 002. The
current time interval will be places in D

Flags ER: CC, D, or N is not within specified values.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

Example
The following program shows the overall structure and operation of the sched-
uled interrupt.

Here, the scheduled subroutine is started and will be repeated every 20 ms. The
control flow logic of the main program is unaffected by execution of the sched-
uled subroutine, i.e., immediately after the sub

Description

Scheduling the Interrupt

CC = 000
(Interval)

CC = 001
(Time to First Interrupt)

CC = 002
(Read Interval)

SubroutinesandInterruptControl Section 5-21

187

routine has finished execution, control returns to the point in the main program
where it was suspended.

SBN(92) 99

INT(89)

000

004

#0002

RET(93)

INT(89)

001

004

#0002

25315

Main program

Subroutine

Set at 20 ms.

Main program execution

Interrupts every 20 ms Returned from
scheduled
interrupt
routine

First Cycle Flag

Address Instruction Operands Address Instruction Operands

00000 LD 25315
00001 INT(89)

001
004

0002
00002 INT(89)

000
004

0002

Main program.

00500 SBN(92) 99

Subroutine.

00600 RET(93)

SubroutinesandInterruptControl Section 5-21

188

5-22 Step Instructions
The step instructions STEP(08) and SNXT(09) are used in conjunction to set up
breakpoints between sections in a large program so that the sections can be ex-
ecuted as units and reset upon completion. A section of program will usually be
defined to correspond to an actual process in the application. (Refer to the appli-
cation examples later in this section.) A step is like a normal programming code,
except that certain instructions (e.g., IL(02)/ILC(03), JMP(04)/JME(05)) may not
be included.

5-22-1 STEP DEFINE and STEP START--STEP(08)/SNXT(09)

B: Control bit

IR, AR, HR, LR

Ladder Symbols Definer Data Areas

STEP(08) B STEP(08)

B: Control bit

IR, AR, HR, LR

SNXT(09) B

Limitations All control bits must be in the same word and must be consecutive.

STEP(08) uses a control bit in the IR or HR areas to define the beginning of a
section of the program called a step. STEP(08) does not require an execution
condition, i.e., its execution is controlled through the control bit. To start execu-
tion of the step, SNXT(09) is used with the same control bit as used for
STEP(08). If SNXT(09) is executed with an ON execution condition, the step
with thesamecontrol bit is executed. If theexecution condition is OFF, the step is
not executed. The SNXT(09) instruction must be written into the program so that
it is executed before the program reaches the step it starts. It can be used at dif-
ferent locations before the step to control the step according to two different exe-
cution conditions (see example 2, below). Any step in the program that has not
been started with SNXT(09) will not be executed.
Once SNXT(09) is used in the program, step execution will continue until
STEP(08) is executed without a control bit. STEP(08) without a control bit must
be preceded by SNXT(09) with a dummy control bit. The dummy control bit may
be any unused IR or HR bit. It cannot be a control bit used in a STEP(08).
Execution of a step is completed either by execution of the next SNXT(09) or by
turning OFF the control bit for the step (see example 3 below). When the step is
completed, all of the IR and HR bits in the step are turned OFF and all timers in

Description

StepInstructions Section 5-22

189

the step are reset to their SVs. Counters, shift registers, and bits used in
KEEP(11) maintain status. Two simple steps are shown below.

SNXT(09) LR 2000

STEP(08) LR 2000

00000

Step controlled by LR 2000

SNXT(09) LR 2001

STEP(08) LR 2001

00001

Step controlled by LR 2001

SNXT(09) 2002

STEP(08)

00002

Starts step execution

Ends step execution

1st step

2nd step

Address Instruction Operands Address Instruction Operands

00000 LD 00000
00001 SNXT(09) LR 2000
00002 STEP(08) LR 2000

Step controlled by 20200.

00100 LD 00001
00101 SNXT(09) LR 2001

00102 STEP(08) LR 2001

Step controlled by 20201.

00200 LD 00002
00201 SNXT(09) LR 2002
00202 STEP(08) ---

Steps can be programmed inconsecutively. Eachstep must start withSTEP(08)
and generally ends with SNXT(09) (see example 3, below, for an exception).
When steps are programmed in series, three types of execution are possible:
sequential, branching, or parallel. The execution conditions for, and theposition-
ing of, SNXT(09) determine how the steps are executed. The three examples
given below demonstrate these three types of step execution.

Interlocks, jumps, SBN(92), and END(01) cannot be used within step programs.

Bits used as control bits must not be used anywhere else in the program unless
they are being used to control the operation of the step (see example 3, below).
All control bits must be in the same word and must be consecutive.

If IR or LR bits are used for control bits, their status will be lost during any power
interruption. If it is necessary to maintain status to resume executionat thesame
step, HR bits must be used.

Precautions

StepInstructions Section 5-22

190

Flags 25407: Step Start Flag; turns ON for one cycle when STEP(08) is executed and
can be used to reset counters in steps as shown below if necessary.

SNXT(09) 01000

CP

R

CNT 01

#0003

00000

00100

25407

STEP(08) 01000

1 cycle

25407

01000

Start

Address Instruction Operands Address Instruction Operands

00000 LD 00000
00001 SNXT(09) 01000
00002 STEP(08) 01000
00003 LD 00100

00004 LD 25407
00005 CNT 01

0003

Examples
The following three examples demonstrate the three types of execution control
possible with step programming. Example 1 demonstrates sequential execu-
tion; example 2, branching execution; and example 3, parallel execution.

The following process requires that three processes, loading, part installation,
and inspection/discharge, be executed in sequence with each process being re-
set before continuing on the the next process. Various sensors (SW1, SW2,
SW3, and SW4) are positioned to signal when processes are to start and end.

SW 1

SW 2
SW 3

SW 4

Loading Part installation Inspection/discharge

Example 1:
Sequential Execution

StepInstructions Section 5-22

191

The following diagram demonstrates the flow of processing and the switches
that are used for execution control.

Process A

Process B

Process C

Loading

Part Installation

Inspection/discharge

SW1

SW2

SW3

SW4

The program for this process, shown below, utilizes the most basic type of step
programming: each step is completed by a unique SNXT(09) that starts the next

StepInstructions Section 5-22

192

step. Each step starts when the switch that indicates the previous step has been
completed turns ON.

SNXT(09) 12800

00001 (SW1)

STEP(08) 12800

SNXT(09) 12801

STEP(08) 12801

SNXT(09) 12802

STEP(08) 12802

SNXT(09) 12803

STEP(08)

Process A

Process B

Process C

00002 (SW2)

00003 (SW3)

00004 (SW4)

Process A started.

Process A reset.
Process B started.

Process B reset.
Process C started.

Process C reset.

Address Instruction Operands Address Instruction Operands

00000 LD 00001
00001 SNXT(09) 12800
00002 STEP(08) 12800

Process A

00100 LD 00002
00101 SNXT(09) 12801
00102 STEP(08) 12801

Process B

00100 LD 00003
00101 SNXT(09) 12802
00102 STEP(08) 12802

Process C

00200 LD 00004
00201 SNXT(09) 12803
00202 STEP(08) ---

The following process requires that a product is processed in one of two ways,
depending on its weight, before it is printed. The printing process is the same

Example 2:
Branching Execution

StepInstructions Section 5-22

193

regardless of which of the first processes is used. Various sensors are posi-
tioned to signal when processes are to start and end.

SW A1 SW A2

SW B1 SW B2

Process CWeight scale

Process B

Process A

Printer
SW D

The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, either process A or process B is used
depending on the status of SW A1 and SW B1.

Process A

Process C

End

SW A1 SW B1

SW A2 SW B2

SW D

Process B

The program for this process, shown below, starts with two SNXT(09) instruc-
tions that start processes A and B. Because of the way 00001 (SW A1) and
00002 (SB B1) areprogrammed, only one of these will be executed to start either

StepInstructions Section 5-22

194

process A or process B. Both of the steps for these processes end with a
SNXT(09) that starts the step for process C.

SNXT(09) HR 0001

00002 (SW B2)

STEP(08) HR 0000

SNXT(09) HR 0002

STEP(08) HR 0001

SNXT(09) HR 0002

STEP(08) HR 0002

SNXT(09) HR 0003

STEP(08)

Process A

Process B

Process C

00003 (SW A2)

00004 (SW B2)

00005 (SW D)

Process A started.

Process A reset.
Process C started.

Process B reset.
Process C started.

Process C reset.

00001 (SW A1)

SNXT(09) HR 0000

00002 (SW B2)

00001 (SW A1)

Address Instruction Operands Address Instruction Operands

00000 LD 00001
00001 AND NOT 00002
00002 SNXT(09) HR 0000
00003 LD NOT 00001
00004 AND 00002
00005 SNXT(09) HR 0001
00006 STEP(08) HR 0000

Process A

00100 LD 00003
00101 SNXT(09) HR 0002
00102 STEP(08) HR 0001

Process B

00100 LD 00004
00101 SNXT(09) HR 0002
00102 STEP(08) HR 0002

Process C

00200 LD 00005
00201 SNXT(09) HR 0003
00202 STEP(08) ---

StepInstructions Section 5-22

195

The following process requires that two parts of a product pass simultaneously
through two processes each before they are joined together in a fifth process.
Various sensors are positioned to signal when processes are to start and end.

Process C

SW1

SW2

Process A
SW3

SW4

Process D

Process B

Process E

SW6

SW5 SW7

The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, process A and process C are started
together. When process A finishes, process B starts; when process C finishes,
process D starts. When both processes B and D have finished, process E starts.

Process A

Process E

End

Process C

SW7

Process B Process D

SW3 SW4

SW 1 and SW2 both ON

SW5 and SW6 both ON

The program for this operation, shown below, starts with two SNXT(09) instruc-
tions that start processes A and C. These instructions branch from the same in-
struction line and are always executed together, starting steps for both A and C.
When the steps for both A and C have finished, the steps for process B and D
begin immediately.

When both process B and process D have finished (i.e., when SW5 and SW6
turn ON), processes B and D are reset together by the SNXT(09) at the end of
the programming for process B. Although there is no SNXT(09) at the end of
process D, the control bit for it is turned OFF by executing SNXT(09) LR 0004.
This is because the OUT for LR 0003 is in the step reset by SNXT(09) LR 0004,
i.e., LR 003 is turned OFF when SNXT(09) LR 0004 is executed Process B is
thus reset directly and process D is reset indirectly before executing the step for
process E.

Example 3:
Parallel Execution

StepInstructions Section 5-22

196

STEP(08) LR 0000

SNXT(09) LR 0001

STEP(08) LR 0001

STEP(08) LR 0004

SNXT(09) LR 0005

STEP(08)

Process A

Process B

Process C

00002 (SW3)

00005 (SW7)

Process A started.

Process A reset.
Process B started.

Process E reset.

00001 (SW1 and SW2))

SNXT(09) LR 0000

SNXT(09) LR 0002

Process C started.

01101

SNXT(09) LR 0004

00004 (SW5 and SW6)

LR 0003

STEP(08) LR 0002

Process E started.

Used to
turn off
process D.

00003 (SW4)

SNXT(09) LR 0003

STEP(08) LR 0003

Process C reset.
Process D started.

Process D

Process E

StepInstructions Section 5-22

197

Address Instruction Operands Address Instruction Operands

00000 LD 00001
00001 SNXT(09) LR 0000
00002 SNXT(09) LR 0002
00003 STEP(08) LR 0000

Process A

00100 LD 00002
00101 SNXT(09) LR 0001
00102 STEP(08) LR 0001

Process B

00100 LD 01101
00101 OUT LR

0003
00101 AND 00004
00101 SNXT(09) LR 0004

00102 STEP(08) LR 0002

Process C

00200 LD 00003
00201 SNXT(09) LR 0003
00202 STEP(08) LR 0003

Process D

00300 STEP(08) LR 0004

Process E

00400 LD 00005
00401 SNXT(09) LR 0005
00402 STEP(08) ---

5-23 Special Instructions
The instructions in this section are used for various operations, including pro-
gramming user error codes and messages, counting ON bits, setting the watch-
dog timer, and refreshing I/O during program execution.

5-23-1 FAILURE ALARM -- FAL(06) and
SEVERE FAILURE ALARM -- FALS(07)

N: FAL number

(00 to 99)

Ladder Symbols Definer Data Areas

@FAL(06) NFAL(06) N

N: FAL number

(01 to 99)
FALS(07) N

FAL(06) and FALS(07) are provided so that the programmer can output error
numbers for use in operation, maintenance, and debugging. When executed
with an ON execution condition, either of these instructions will output a FAL
number to bits 00 to 07 of SR 253. The FAL number that is output can be be-
tween 01 and 99 and is input as the definer for FAL(06) or FALS(07). FAL(06)
with a definer of 00 is used to reset this area (see below).

25307 25300

X101 X100

FAL Area

FAL(06) produces a non-fatal error and FAL(07) produces a fatal error. When
FAL(06) is executed with an ON execution condition, the ALARM/ERROR indi-
cator on the front of the CPU will flash, but PC operation will continue. When
FALS(07) is executed with an ONexecution condition, the ALARM/ERRORindi-
cator will light and PC operation will stop.

Description

SpecialInstructions Section 5-23

198

The system also generates error codes to the FAL area.

A maximum of three FAL error codes will be retained in memory, although only
one of these is available in the FAL area. To access the other FAL codes, reset
the FAL area by executing FAL(06) 00. Each time FAL(06) 00 is executed, an-
other FAL error will be moved to the FAL area, clearing the one that is already
there.

FAL(06) 00 is also used to clear message programmed with the instruction,
MSG(46).
If the FAL area cannot be cleared, as is generally the case when FALS(07) is
executed, first remove thecause of the error and thenclear theFAL area through
the Programming Console (see 4-6-5 Clearing Error Messages).

5-23-2 CYCLE TIME -- SCAN(18)

Mi: Multiplier (BCD)

IR, SR, AR, DM, HR, TC, LR, #

---: Not used.

Ladder Symbols

Operand Data Areas

---: Not used.

SCAN(18)

Mi

@SCAN(18)

Mi

Limitations Mi must be BCD. Only the rightmost three digits of Mi are used.

Description SCAN(18) is used to set a minimum cycle time. Mi is the minimum cycle time that
will be set in milliseconds, e.g., if Mi is 120, the minimum cycle time will be 120
ms. The possible setting range is from 0 to 999 seconds.
If the actual cycle time is less than the cycle time set with SCAN(18) the CPU will
wait until the designated time has elapsed before starting the next cycle. If the
actual cycle time is greater than the set time, the set time will be ignored and the
program will be executed to completion.

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

Mi is not BCD.

5-23-3 MESSAGE DISPLAY -- MSG(46)

FM: First message word

IR, AR, DM, HR, LR

Ladder Symbols Operand Data Areas

MSG(46)

FM

@MSG(46)

FM

When executed with an ON execution condition, MSG(46) reads eight words of
extended ASCII code from FM to FM+7 and displays the message on the Pro-
gramming Console, GPC, or FIT. The displayed message can be up to 16 char-
acters long, i.e., each ASCII character code requires eight bits (two digits). Refer
to Appendix I for the extended ASCII codes. Japanese katakana characters are
included in this code.

Resetting Errors

Description

SpecialInstructions Section 5-23

M SG
ABCDEFGHIJKLM NOP

199

If not all eight words are required for the message, it can be stopped at any point
by inputting “OD.” When OD is encountered in a message, no more words will be
read and the words that normally would be used for the message can be used for
other purposes.

Up to three messages can be buffered inmemory. Oncestored in the buffer, they
are displayed on a first in, first out basis. Since it is possible that more than three
MSG(46)s may be executed within a single cycle, there is a priority scheme,
based on the area where the messages are stored, for the selection of those
messages to be buffered.

The priority of the data areas is as follows for message display:

LR > IR (I/O) > IR (not I/O) > HR > AR > TC > DM
In handling messages from the same area, those with the lowest ad-
dress values have higher priority.

In handling indirectly addressed messages (i.e. *DM), those with the
lowest DM address values have higher priority.

To clear a message, execute FAL(06) 00 or clear it via a Programming Console
using the procedure in 4-6-5 Clearing Error Messages.

If the message data changes while the message is being displayed, the display
will also change.

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

The following example shows the display that would be produced for the instruc-
tion and data given when 00000 was ON. If 00001 goes ON, a message will be
cleared.

MSG(46)

DM 0010

FAL(06) 00

00000

00001

Address Instruction Operands

00000 LD 00000
00001 MSG(46)

DM 0010
00002 LD 00001
00003 FAL(06) 00

DM contents ASCII
equivalent

DM 0010 4 1 4 2 A B

DM 0011 4 3 4 4 C D

DM 0012 4 5 4 6 E F

DM 0013 4 7 4 8 G H

DM 0014 4 9 4 A I J

DM 0015 4 B 4 C K L

DM 0016 4 D 4 E M N

DM 0017 4 F 5 0 O P

Message Buffering and
Priority

Clearing Messages

Example

SpecialInstructions Section 5-23

200

5-23-4 LONG MESSAGE -- LMSG(47)

S: First source word (ASCII)

IR, AR, DM, HR, TC, LR

D: Destination

(000)

Ladder Symbols

Operand Data Areas

---: Not used.

LMSG(47)

S

D

@LMSG(47)

S

D

Limitations S through S+15 must be in the same data area and must be in ASCII. The mes-
sage will be truncated if a null character (00) is contained between S and S+15.

Description LMSG(47) is used to output a 32-character message to a Programming Con-
sole. The message to be output must be in ASCII beginning in word S and end-
ing in S+15, unless a shorter message is desired. A shorter messagecan bepro-
duced by placing a null character (00) into the string; no characters from the null
character on will be output.
D designates the destination of the output. For the C200H, 000 designates the
Programming Console.
To output to the Programming Console, it must be set in TERMINAL mode. Al-
though LMSG(47) will be executed as normal, the message will not appear cor-
rectly on the Programming Console unless TERMINAL mode is set.

Flags ER: S and S+15 are not in the same data area.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

Example Although the display is longer and there is a choice of output devices, the coding
LMSG(47) is the same as that for MSG(46). Refer to Example under the pre-
vious section for an example using MSG(46).

5-23-5 TERMINAL MODE -- TERM(48)

Ladder Symbols

TERM(48)

@TERM(48)

When the execution condition is OFF, TERM(48) is not executed. When theexe-
cution condition is ON, the Programming Console can be switched to TERMI-
NAL mode by pressing the CHG key on the Programming Console. The Pro-
gramming Console will enter the CONSOLE mode when the CHG key is
pressed again. Instructions MSG(46), LMSG(47), and the keyboard mapping
function are executed in the CONSOLE mode.

Description

SpecialInstructions Section 5-23

201

5-23-6 SET SYSTEM -- SYS(49)

P: Parameters

#

---: Not used.

Operand Data Areas

---: Not used.

IR, SR, AR, DM, HR, TC, LR, TR, #

Ladder Symbols

SYS(49)

P

@SYS(49)

P

Limitations Only specific values are valid for P (see Content of Operand P below).
SYS(49) must be programmed at program address 00001 with LD AR 1001 at
program address 00000.

Description SYS(49) is used to control the following 4 operating parameters. All four of these
parameters can be set at the same time using a single SYS(49) instruction.

1,2,3... 1. The battery check in system error checks. If SYS(49) is executed and bit 00
of P is ON, the battery check will be excluded from system error checks
when PC power is turned ON.

2. The initial operating mode. If SYS(49) is executed and bit 01 of P is ON, the
PC will enter MONITOR mode when it is turned ON unless the Initial Mode
Switch on the PC or a Peripheral Device is controlling the mode. Refer to
Initial Operating Mode, below, for the conditions controlling the initial PC
mode.

3. The Force Status Hold Bit (SR 25211). If SYS(49) is executed and bit 06 of P
is ON, theForce Status Hold Bit (SR 25211) will be turned ONwhen PCpow-
er is turned ON.

4. The I/O Status Hold Bit (SR 25212). If SYS(49) is executed and bit 07 of P is
ON, the I/O Status Hold Bit (SR 25212) will be turned ON when PC power is
turned ON.

Content of Operand P The leftmost 8 bits of P must contain A3. The status of bits 00, 01, 06, and 07 are
used to control the operating parameters.

1 1 0 0 0 0 1 1
7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 1
15 14 13 12 11 10 9 8

A 3
Turns ON the I/O Status
Hold Bit (SR 25212).

Turns ON the Forced Status
Hold Bit (SR 25211).

Sets the initial operating
mode to MONITOR mode.

Excludes battery check
from system error checks.

Initial Operating Mode The factors that determine the PC’s initial operating mode are listed below in or-
der of priority.

1,2,3... 1. Programming Console
If a ProgrammingConsole is mounted to the PC, the PCwill start in themode
set on the Programming Console’s mode switch regardless of any other
conditions.

2. Memory Unit’s Initial Mode Switch
If a Programming Console is not mounted to the PC and the Initial Mode
Switch on the Memory Unit is turned ON, the PC will start in RUN mode re-
gardless of any other conditions.

SpecialInstructions Section 5-23

202

3. SYS(49)
If a Programming Console is not mounted to the PC and the Initial Mode
Switch on the Memory Unit is OFF, the PC will start in MONITOR mode if
SYS(49) is executed with bit 01 of P turned ON.

4. Other Peripheral Devices
If a Programming Console is not mounted to the PC, the Initial Mode Switch
on the Memory Unit is OFF, and the initial mode is not set with SYS(49) (bit
01 of P OFF or SYS(49) not executed), the PC will start in PROGRAM mode
if any other peripheraldevice (Peripheral Interface Unit, PROM Writer, Print-
er Interface Unit, or Floppy Disk Interface Unit) is connected.

If none of the above conditions is met, the PC will start in RUN mode.

Flags No flags are affected by this instruction.

5-23-7 BIT COUNTER -- BCNT(67)

N: Number of words (BCD)

IR, AR, DM, HR, TC, LR, #

SB: Source beginning word

IR, SR, AR, DM, HR, TC, LR

Operand Data Areas

R: Destination word

IR, AR, DM, HR, TC, LR

Ladder Symbols

BCNT(67)

N

SB

R

@BCNT(67)

N

SB

R

Limitations N cannot be 0.

When the execution condition is OFF, BCNT(67) is not executed. When the exe-
cution condition is ON, BCNT(67) counts the total number of bits that are ON in
all words between SB and SB+(N--1) and places the result in D.

Flags ER: N is not BCD, or N is 0; SB and SB+(N--1) are not in the same area.
The resulting count value exceeds 9999.
Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

5-23-8 VALUE CALCULATE -- VCAL(69)

C: Control word

IR, AR, DM, HR, TC, LR, #

S: Input data source word

IR, SR, AR, DM, HR, TC, LR

Operand Data Areas

D: Result destination word

IR, AR, DM, HR, TC, LR

Ladder Symbols

VCAL(69)

C

S

D

@VCAL(69)

C

S

D

Limitations For trigonometric functions, x, the content of S, must be in BCD form and satisfy
the condition 0000 ' x ' 0900 (0%'*' 90%).

When the execution condition is OFF, VCAL(69) is not executed. When the exe-
cution condition is ON, the operation of VCAL(69) depends on the control word
C. If C is #0000 or #0001, VCAL(69) computes sin(x) or cos(x)*. If C is an ad-

Description

Description

SpecialInstructions Section 5-23

203

dress, VCAL(69) computes f(x) of the function entered in advance at word C.
The function is a series of line segments (which can approximate a curve) deter-
mined by the operator.
* x is the content of S.

Flags ER: Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)
For trigonometric functions, x > 0900. (x is the content of S.)
The linear approximation data is not readable.

EQ: The result is 0.

The following example demonstrates the use of the VCAL(69) sine function to
calculate the sine of 30%. The sine function is specified when C is #0000.

Input data, x Result data

S: DM 0000 D: DM 0100
0 101 100 10--1 10--1 10--2 10--3 10--4

0 3 0 0 5 0 0 0

VCAL(69)

#0000

DM 0000

DM 0100

00000

Enter input data not
exceeding #0900 in BCD.

Result data has four significant
digits, fifth and higher digits are
ignored. The result for sin(90)
will be 0.9999, not 1.

Address Instruction Operands

00000 LD 00000
00001 VCAL(69)

0000
DM 0000
DM 0100

The following example demonstrates the use of the VCAL(69) cosine function to
calculate the cosine of 30%. The cosine function is specified when C is #0001.

Input data, x Result data

S: DM 0010 D: DM 0110
0 101 100 10--1 10--1 10--2 10--3 10--4

0 3 0 0 8 6 6 0

VCAL(69)

#0001

DM 0010

DM 0110

00000

Enter input data not
exceeding #0900 in BCD.

Result data has four significant
digits, fifth and higher digits are
ignored. The result for cos(0)
will be 0.9999, not 1.

Address Instruction Operands

00000 LD 00000
00001 VCAL(69)

0001
DM 0010
DM 0110

VCAL(69) linear approximation is specified when C is a memory address. Word
C is the first word of the continuous block of memory containing the linear ap-
proximation data.
The content of word C specifies the number of line segments in the approxima-
tion, and whether the input and output are in BCD or BIN form. Bits 00 to 07 con-
tain the number of line segments less 1, m--1, as binary data. Bits 14 and 15 de-
termine, respectively, the output and input forms: 0 specifies BCD and 1 speci-
fies BIN.

Sine Function

Cosine Function

Linear Approximation

SpecialInstructions Section 5-23

Y0

X0 X1 X2 X3 X4 Xm

X

Y

Ym

Y4

Y3

Y1

Y2

204

Enter the coordinates of the m+1 end-points, which define the m line segments,
as shown in the following table. Enter all coordinates in BIN form. Do not allow
the data block to overlap the RAM and EEPROM sections of the DM area. The
EEPROM section begins at DM1000.

Word Coordinate

C+1 Xm (max. X value)

C+2 Y0

C+3 X1

C+4 Y1

C+5 X2

C+6 Y2

+ +
C+(2m+1) Xm

C+(2m+2) Ym

The following example demonstrates the construction of a linear approximation
with 12 line segments. The block of data is continuous, as it must be, from DM
0000 to DM 0026 (C to C + (2, 12 + 2)). The input data is taken from IR 010, and
the result is output to IR 011.

DM 0000 $C00B
DM 0001 $05F0 X12

DM 0002 $0000 Y0

DM 0003 $0005 X1

DM 0004 $0F00 Y1

DM 0005 $001A X2

DM 0006 $0402 Y2

+ + +
DM 0025 $05F0 X12

DM 0026 $1F20 Y12

VCAL(69)

DM 0000

010

011

00000

1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

Bit
15

Bit
00

(Output and
input both BIN)

(m--1 = 11: 12 line
segments)

Content Coordinate

Address Instruction Operands

00000 LD 00000
00001 VCAL(69)

DM 0000
010
011

SpecialInstructions Section 5-23

205

In this case, the input data word, IR 010, contains #0014, and f(0014) = #0726 is
output to R, IR 011.

X

Y

$1F20

$0F00

$0726

$0402

(0,0)
$0005 $0014 $001A $05F0

(x,y)

5-23-9 WATCHDOG TIMER REFRESH -- WDT(94)

T: Watchdog timer value

(00 to 63)

Ladder Symbols Definer Data Areas

@WDT(94) TWDT(94) T

When the execution condition is OFF, WDT(94) is not executed. When the exe-
cution condition is ON, WDT(94) extends the setting of the watchdog timer (nor-
mally set by the system to 130 ms) by 100 ms times T.

Timer extension = 100 ms x T.

Precautions If the cycle time is longer than the time set for the watchdog timer, 9F will be out-
put to the FAL area and the CPU will stop.
If the cycle time exceeds 6,500 ms, a FALS 9F will be generated and the system
will stop.
Timers might not function properly when the cycle time exceeds 100 ms. When
using WDT(94), the same timer should be repeated in the program at intervals
that are less than 100 ms apart. TIMH(15) should be used only in a scheduled
interrupt routine executed at intervals of 10 ms or less.

Flags There are no flags affected by this instruction.

5-23-10 I/O REFRESH -- IORF(97)

St: Starting word

IR 000 to IR 049

Ladder Symbol

E: End word

IR 000 to IR 049

Operand Data Areas

IORF(97)

St

E

IORF(97) can be used to refresh I/O words allocated to only I/O Units (IR 000 to
IR 030) and Special I/O Units (IR 100 to IR 199) mounted to the CPU or Expan-
sion I/O Racks. It cannot beused for other I/O words, suchas I/O Units onSlaves
Racks or Group-2 High-density I/O Units.

Description

Limitations

SpecialInstructions Section 5-23

206

St must be less than or equal to E.

To refresh I/O words allocated to CPU or Expansion I/O Racks (IR 000 to
IR 030), simply indicate the first (St) and last (E) I/O words to be refreshed.
When the execution condition for IORF(97) is ON, all words between St and E
will be refreshed. This will be in addition to the normal I/O refresh performed dur-
ing the CPU’s cycle.
To refresh I/O words allocated to Special I/O Units (IR 100 to IR199), indicate the
unit numbers of the Units. IR 040 to IR 049 correspond to Special I/O Units 0 to9.
For example, set St=IR 043 and E=IR 045 to refresh the I/O words allocated to
Special I/O Units 3, 4, and 5. The I/O words allocated to those Units (IR 130 to
IR 159) will be refreshed when IORF(97) is executed.This will be in addition to
the normal I/O refresh performed during the CPU’s cycle.

Note In this instruction, IR 040 to IR 049 are allocated to Group-2 High-density I/O
Units 0 to 9 only. Execution of IORF(97) will have no effect on the content of IR
040 to IR 049.

Refer to 5-23-11 GROUP-2 HIGH-DENSITY I/O REFRESH -- MPRF(61) for de-
tails on refreshing words allocated to Group-2 High-density I/O Units.

When Standard I/O Units are specified, the execution time for IORF(97) is com-
puted as follows:

TIORF = instruction execution time + Input Unit I/O refresh time
+ Output Unit I/O refresh time

= 0.4 ms + 0.07 ms , (no. of 8-pt Units + no. of 16-pt Units ,2)
+ 0.04 ms , (no. of 5- and 8-pt Units + no. of 12-pt Units ,2)

When Special I/O Units are specified, the execution time for IORF(97) is com-
puted as follows:

TIORF = instruction execution time + -(Special I/O Unit I/O refresh
times)

The instruction execution time is 0.4 ms. Refer to 6-1 Cycle Time for I/O re-
fresh times for Special I/O Units.

Flags There are no flags affected by this instruction.

5-23-11 GROUP-2 HIGH-DENSITY I/O REFRESH -- MPRF(61)

St: Starting Unit

#0000 to #0009

Ladder Symbol

E: End Unit

#0000 to #0009

Operand Data Areas

MPRF(61)

St

E

MPRF(61) can be used to refresh I/O words allocated to Group-2 High-density
I/O Units (IR 030 to IR 049) only. It cannot be used for other I/O words.
St and E must be between #0000 and #0009. St must be less than or equal to E.

When the execution condition is OFF, MPRF(61) is not executed. When the ex-
ecution condition is ON, the I/O words allocated to Group-2 High-density I/O
Units with I/O numbers St through E will be refreshed.This will be in addition to
the normal I/O refresh performed during the CPU’s cycle.
It is not possible to specify the I/O words by address, only by the I/O number of
the Unit to which they are allocated.

Description

Execution Time

Limitations

Description

SpecialInstructions Section 5-23

207

The execution time for MPRF(61) is computed as follows:
TMPRF = instruction execution time + initial processing time

+ -(Group-2 High-density I/O Unit I/O refresh times)
The instruction execution time is 0.4 ms and the initial processing time is
0.36 ms. Refer to 6-1 Cycle Time for a table showing I/O refresh times for
Group-2 High-density I/O Units.

Flags ER: St or E is not BCD between #0000 and #0009.
St is greater than E.

5-24 Network Instructions
The SYSMAC NET Link/SYSMAC LINK instructions are used for communicat-
ing with other PCs linked through the SYSMAC NET Link System or SYSMAC
LINK System. These instructions are applicable to the C200H-CPU31-E only.

5-24-1 NETWORK SEND -- SEND(90)

S: Source beginning word

IR, SR, AR, DM, HR, TC, LR

D: Destination beginning word

IR, AR, DM, HR, TC, LR

Operand Data Areas

C: First control data word

IR, AR, DM, HR, TC, LR

Ladder Symbols

SEND(90)

S

D

C

@SEND(90)

S

D

C

Limitations Can be performed with the CPU31-E only. C through C+2 must be within the
same data area and must be within the values specified below. To be able to use
SEND(90), the system must have a SYSMAC NET Link or SYSMAC LINK Unit
mounted.

When the execution condition is OFF, SEND(90) is not executed. When the exe-
cution condition is ON, SEND(90) transfers data beginning at word S, to ad-
dresses specified by D in the designated node on the SYSMAC NET Link/SYS-
MAC LINK System. The control words, beginning with C, specify the number of
words to be sent, the destination node, and other parameters. The contents of
the control data depends on whether a transmission is being sent in a SYSMAC
NET Link System or a SYSMAC LINK System.
The status of bit 15 of C+1 determines whether the instruction is for a SYSMAC
NET Link System or a SYSMAC LINK System.

Control Data
SYSMAC NET Link Systems The destination port number is always set to 0. Set the destination node number

to 0 to send the data to all nodes. Set the network number to 0 to send data to a
node on the same Subsystem (i.e., network). Refer to the SYSMAC NET Link
System Manual for details.

Word Bits 00 to 07 Bits 08 to 15

C Number of words (0 to 1000 in 4-digit hexadecimal, i.e., 0000hex to 03E8hex)

C+1 Network number (0 to 127 in 2-digit
hexadecimal, i.e., 00hex to 7Fhex)

Bit 14 ON: Operating level 0
OFF: Operating level 1

Bits 08 to 13 and 15: Set to 0.

C+2 Destination node (0 to 126 in 2-digit
hexadecimal, i.e., 00hex to 7Ehex)*

Destination port
NSB: 00
NSU: 01/02

*The node number of the PC executing the send may be set.

Execution Time

Description

NetworkInstructions Section 5-24

208

SYSMAC LINK Systems Set the destination node number to 0 to send the data to all nodes. Refer to the
SYSMAC LINK System Manual for details.

Word Bits 00 to 07 Bits 08 to 15

C Number of words (0 to 256 in 4-digit hexadecimal, i.e., 0000hex to 0100hex)

C+1 Response time limit (0.1 and 25.4
seconds in 2-digit hexadecimal
without decimal point, i.e., 00hex to
FFhex)

Note: The response time will be
2 seconds if the limit is set to 0hex.
There will be no time limit if the
time limit is set to FFhex.

Bits 08 to 11:
No. of retries (0 to 15 in
hexadecimal,
i.e., 0hex to Fhex)

Bit 12: Set to 0.
Bit 13 ON: Response not returned.

OFF: Response returned.
Bit 14 ON: Operating level 0

OFF: Operating level 1
Bit 15: Set to 1.

C+2 Destination node (0 to 62 in 2-digit
hexadecimal, i.e., 00hex to 3Ehex)*

Set to 0.

*The node number of the PC executing the send cannot be set.

Examples This example is for a SYSMACNET Link System. When00000 is ON, the follow-
ing program transfers the content of IR 001 through IR 005 to LR 20 through LR
24 on node 10.

0 0 0 5

0 0 0 0

0 0 0 A

IR 001

IR 002

IR 003

IR 004

IR 005

LR 20

LR 21

LR 22

LR 23

LR 24

DM 0010

DM 0011

DM 0012

15 0

SEND(90)

001

LR 20

DM 0010

00000

Node 10

Address Instruction Operands

00000 LD 00000
00001 SEND(90)

001
LR 20
DM 0010

Flags ER: The specified node number is greater than 126 in a SYSMAC NET Link
System or greater than 62 in a SYSMAC LINK System.
The sent data overruns the data area boundaries.
Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)
There is no SYSMAC NET Link/SYSMAC LINK Unit.

5-24-2 NETWORK RECEIVE -- RECV(98)

S: Source beginning word

IR, SR, AR, DM, HR, TC, LR

D: Destination beginning word

IR, AR, DM, HR, TC, LR

Operand Data Areas

C: First control data word

IR, AR, DM, HR, TC, LR

Ladder Symbols

RECV(98)

S

D

C

@RECV(98)

S

D

C

NetworkInstructions Section 5-24

209

Limitations Can be performed with the CPU31-E only. C through C+2 must be within the
same data area and must be within the values specified below. To be able to use
RECV(98), the system must have a SYSMAC NET Link or SYSMAC LINK Unit
mounted.

When the execution condition is OFF, RECV(98) is not executed. When the exe-
cution condition is ON, RECV(98) transfers data beginning at S from a node on
the SYSMAC NET Link/SYSMAC LINK System to words beginning at D. The
control words, beginning with C, provide the number of words to be received, the
source node, and other transfer parameters.
The status of bit 15 of C+1 determines whether the instruction is for a SYSMAC
NET Link System or a SYSMAC LINK System.

Control Data
SYSMAC NET Link Systems The source port number is always set to 0. Set the network number to 0 to re-

ceive data to a node on the same Subsystem (i.e., network). Refer to the SYS-
MAC NET Link System Manual for details.

Word Bits 00 to 07 Bits 08 to 15

C Number of words (0 to 1000 in 4-digit hexadecimal, i.e., 0000hex to 03E8hex)

C+1 Network number (0 to 127 in 2-digit
hexadecimal, i.e., 00hex to 7Fhex)

Bit 14 ON: Operating level 0
OFF: Operating level 1

Bits 08 to 13 and 15:
Set to 0.

C+2 Source node (1 to 126 in 2-digit
hexadecimal, i.e., 01hex to 7Ehex)

Source port
NSB: 00
NSU: 01/02

SYSMAC LINK Systems Refer to the SYSMAC LINK System Manual for details.

Word Bits 00 to 07 Bits 08 to 15

C Number of words (0 to 256 in 4-digit hexadecimal, i.e., 0000hex to 0100hex)

C+1 Response time limit (0.1 and 25.4
seconds in 2-digit hexadecimal
without decimal point, i.e., 00hex to
FFhex)

Note: The response time will be
2 seconds if the limit is set to 0hex.
There will be no time limit if the
time limit is set to FFhex.

Bits 08 to 11:
No. of retries (0 to 15 in
hexadecimal, i.e., 0hex to
Fhex)

Bit 12: Set to 0.
Bit 13: Set to 0.
Bit 14 ON: Operating level 0

OFF: Operating level 1
Bit 15: Set to 1.

C+2 Source node (0 to 62 in 2-digit
hexadecimal, i.e., 00hex to 3Ehex)

Set to 0.

Description

NetworkInstructions Section 5-24

210

Examples This example is for a SYSMACNET Link System. When00000 is ON, the follow-
ing program transfers the content of IR 001 through IR 005 to LR 20 through LR
24 on node 10.

0 0 0 5

0 0 0 0

0 0 0 A

IR 001

IR 002

IR 003

IR 004

IR 005

LR 20

LR 21

LR 22

LR 23

LR 24

DM 0010

DM 0011

DM 0012

15 0

RECV(98)

001

LR 20

DM 0010

00000

Node 10

Address Instruction Operands

00000 LD 00000
00001 RECV(98)

001
LR 20
DM 0010

Flags ER: The specified node number is greater than 126 in a SYSMAC NET Link
System or greater than 62 in a SYSMAC LINK System.

The received data overflows the data area boundaries.

Indirectly addressed DM word is non-existent. (Content of *DM word is
not BCD, or the DM area boundary has been exceeded.)

There is no SYSMAC NET Link/SYSMAC LINK Unit.

5-24-3 About Network Communications
SEND(90) and RECV(98) are based on command/response processing. That
is, the transmission is not complete until the sending node receives and ac-
knowledges a response from the destination node. Note that the
SEND(90)/RECV(98) Enable Flag is not turned ON until the first END(01) after
the transmission is completed. Refer to the SYSMAC NET Link System Manual
or SYSMAC LINK System Manual for details about command/response opera-
tions.

If multiple SEND(90)/RECV(98) operations are used, the following flags must be
used to ensure that any previous operation has completed before attempting
further send/receive SEND(90)/RECV(98) operations

SR Flag Functions

SEND(90)/RECV(98)
Enable Flags
(SR 25201, SR 25204)

OFF during SEND(90)/RECV(98) execution (including
command response processing). Do not start a
SEND(90)/RECV(98) operation unless this flag is ON.

SEND(90)/RECV(98)
Error Flags
(SR 25200, SR 25203)

OFF following normal completion of SEND/RECV (i.e.,
after reception of response signal)

ON after an unsuccessful SEND(90)/RECV(98) attempt.
Error status is maintained until the next
SEND(90)/RECV(98) operation.

Error types:
Time-out error (command/response time greater than 1
second)
Transmission data errors

NetworkInstructions Section 5-24

211

Timing

Instruction
received

Transmission
completes
normally

Instruction
received

Transmission
error

Instruction
received

Successful
send/receive
execution

Send/receive
error

Data is transmitted for SEND(90) and RECV(98) for all PCs when
SEND(90)/RECV(98) is executed. Final processing for transmissions/recep-
tions is performed during servicing of peripheral devices and Link Units.

To ensure successful SEND(90)/RECV(98) operations, your program must use
the SEND(90)/RECV(98) Enable Flags and SEND(90)/RECV(98) Error Flags to
confirm that execution is possible. The following program shows one example of
how to do this for a SYSMAC NET Link System.

Data Processing for
SEND(90)/RECV(98)

Programming Example:
Multiple
SEND(90)/RECV(98)

NetworkInstructions Section 5-24

212

S

R

KEEP(11)

12802

DIFU(13) 12801

@MOV(21)

#000A

DM 0000

12800

00000 25204 12802

12801

@MOV(21)

#0000

DM 0001

@MOV(21)

#0003

DM 0002

XFER(70)

#0010

000

DM 0010

@SEND(90)

DM 0010

DM 0020

DM 0000

00200

XFER(70)

#0016

000

DM 0030

00001 25204 12800

12803

@MOV(21)

#0010

DM 0003

12802

@MOV(21)

#0000

DM 0004

@MOV(21)

#007E

DM 0005

@RECV(98)

HR 10

LR 10

DM 0003

12802 25204 25203

12800 25203

12800 prevents execution of SEND(90) until
RECV(98) (below) has completed. IR 00000
is turned ON to start transmission.

Data is placed into control data words to
specify the 10 words to be transmitted to
node 3 in operating level 1 of network 00
(NSB).

Turns ON to indicate transmission error.

Transmitted data moved into words
beginning at DM 0030 for storage.

12802 prevents execution of RECV(98)
when SEND(90) above has not completed.
IR 00001 is turned ON to start transmission.

Data moved into control data words to
specify the 16 words to be transmitted from
node 126 in operating level 1 of network 00
(NSB).

SEND(90)/RECV(98) Enable Flag

SEND(90)/RECV(98) Error Flag

12800 25204

Resets 12800, above.

DIFU(13) 12803

12802 25204

Resets 12802, above.

00201
12802 25203 Turns ON to indicate reception error.

SEND(90)/RECV(98) Error Flag

S

R

KEEP(11)

12800

NetworkInstructions Section 5-24

213

Address Instruction Operands Address Instruction Operands

00000 LD 00000
00001 AND 25204
00002 AND NOT 12802
00003 LD 12801
00004 KEEP(11) 12800
00005 LD 12800
00006 @MOV(21)

000A
DM 0000

00007 @MOV(21)
0000
DM 0001

00008 @MOV(21)
0003
DM 00002

00009 @XFER(70)
0010

000
DM 0002

00010 @SEND(90)
DM 0010
DM 0020
DM 0000

00011 LD 12800
00012 AND 25203
00013 OUT 00200
00014 LD 12800
00015 AND 25204
00016 DIFU(13) 12801
00017 LD 00001
00018 AND 25204

00019 AND NOT 12800
00020 LD 12803
00021 KEEP(11) 12802
00022 LD 12802
00023 AND 25204
00024 AND NOT 25203
00025 XFER(70)

0016
000

DM 0030
00026 LD 12802
00027 @MOV(21)

0010
DM 0003

00028 @MOV(21)
0000
DM 0004

00029 @MOV(21)
007E
DM 0005

00030 @RECV(98)
HR 10
LR 10
DM 0003

00031 LD 12802
00032 AND 25203
00033 OUT 00201
00034 LD 12802
00035 AND 25204
00036 DIFU(13) 12803

NetworkInstructions Section 5-24

215

SECTION 6
Program Execution Timing

Thetim ingofvariousoperationsm ustbeconsideredbothwhenwritinganddebuggingaprogram .Thetim erequiredtoex-
ecutetheprogram andperform otherCPU operationsisim portant,asisthetim ingofeachsignalcom ingintoandleavingthe
PC inordertoachievethedesiredcontrolactionattherighttim e.Thissectionexplainsthecycleandshowshow tocalculate
thecycletim eandI/O responsetim es.

I/O responsetim esinLinkSystem saredescribedintheindividualSystem M anuals.ThesearelistedattheendofSection 1
Introduction.

6-1 CycleTim e 216...
6-2 CalculatingCycleTim e 220...

6-2-1 PC withI/O UnitsOnly 220..
6-2-2 PC withLinkUnits 221...

6-3 InstructionExecutionTim es 222...
6-4 I/O ResponseTim e 227...

216

6-1 Cycle Time
To aid in PC operation, the average, maximum, and minimum cycle times can be
displayed on the Programming Console or any other Programming Device and
the maximum cycle time and current cycle time values are held in AR 26 and AR
27. Understanding the operations that occur during the cycle and the elements
that affect cycle time is, however, essential to effective programming and PC op-
erations.
The major factors in determining program timing are the cycle time and the I/O
response time. One scan of CPU operation is called acycle; the time required for
one cycle is called the cycle time. The time required to produce a control output
signal following reception of an input signal is called the I/O response time.
The overall flow of the CPU operation is as shown in the following flowchart.

CycleTim e Section 6-1

217

Flowchart of CPU Operation

YES

NO

NO

Power application

Clears IR area and
resets all timers

Checks I/O Unit connections

Resets watchdog timer

Checks hardware and
Program Memory

Check OK?

Services Host Link Units

ALARM/ERROR

Sets error flags and turns
ON or flashes indicator

Executes program

Resets watchdog timer

Refreshes input bits
and output signals

ALARM
(Flashing)ERROR

(Solid ON)

Services Peripheral devices

Resets watchdog timer and
program address counter

End of program?

YES

SCAN(18)
executed? NO

YES
Resets watchdog timer and waits
until the set cycle time has elapsed

Calculates cycle time

Services SYSMAC LINK and
SYSMAC NET Link Units
(C200H-CPU31-E only)

Initialization
on power-up

Overseeing
processes

Program
execution

Cycle time
calculation

I/O
refreshing

Host Link Unit
servicing

Peripheral
device
servicing

SYSMAC LINK
and SYSMAC
NET Link Unit
servicing

PC
cycle
time

CycleTim e Section 6-1

218

The first three operations immediately after power application are performed
only once each time the PC is turned on. The rest of the operations are per-
formed in cyclic fashion, with each scan forming one cycle. The cycle time is the
time that is required for the CPU to complete one of these cycles. This cycle in-
cludes basically seven types of operation.

1,2,3... 1. Overseeing

2. Program execution

3. Cycle time calculation

4. I/O refreshing

5. Host Link Unit servicing

6. Peripheral device servicing

7. SYSMAC LINK and SYSMAC NET Link Unit servicing

The cycle time is the total time required for the PC to perform all of the above
operations, in the order 4, 5, 6, 7, 1, 2.

Operation Time required Function

1. Overseeing CPU31-E: 3.5 ms

CPU21-E/23E:
2.8 ms (without Memory Unit clock function)
3.1 ms (with Memory Unit clock function)

Watchdog timer set. I/O Bus, Program
Memory checked. Clock refreshed.

2. Program
execution

Total execution time for all instructions varies
with program size, the instructions used, and
execution conditions. Refer to 6-3 Instruction
Execution Times for details.

Program executed.

3. Cycle time
calculation

Negligible Cycle time calculated. When the Cycle
Time instruction (SCAN(18)) is executed,
waits until the set time has elapsed and
then resets the watchdog timer.

4. I/O refreshing 70 .s per input byte. 40 .s per output byte.
1.3 ms per Remote I/O Master Unit + 0.2 ms
per I/O word used in Remote I/O Slave
Units.

The total Group-2 High-density I/O Unit re-
fresh time is 0.36 ms (for initial processing) +
Group-2 High-density I/O Unit refresh times.

Refer to the tables below for details on PC
Link, Special I/O Unit, and Group-2 High-
density I/O Unit refresh times.

Input bits set according to status of input
signals. Output signals sent according to
status of output bits in memory.
Inputs and Outputs in Remote I/O Systems
refreshed.
Special I/O Units serviced.
Group-2 High-density I/O Units serviced.

5. Host Link Unit
servicing

8 ms max. per Unit Commands from computers connected
through Rack-mounting Host Link Units
processed.

6. Peripheral device
servicing

0 ms when no devices are mounted.
0.8 ms when T < 13 ms.
T x 0.06 ms when T > 13 ms.
(T is the total cycle time calculated in opera-
tion 3.)

Commands from Programming Devices
and Interface Units processed.

7. SYSMAC LINK and
SYSMAC NET Link Unit
servicing

1.5 ms per Unit + 10 ms max. Commands from PCs or computers con-
nected through SYSMAC LINK/NET Link
Units processed.

SYSMAC LINK and SYSMAC NET Link
Unit servicing is performed in the CPU31-E
only.

CycleTim e Section 6-1

219

PC Link Unit I/O Refresh

Switch 7 setting I/O pts to refresh Time required
Pin 1 Pin 2 (ms)

0 0 512 8.9

0 1 256 5.7

1 0 128 3.6

1 1 64 2.8

Special I/O Unit Refresh

Unit Time required

C200H-ID501/215 0.8 ms each

C200H-OD501/215 0.8 ms each when set for 32 I/O pts.

C200H-MD501/215 1.8 ms each when set for I/O timing

C200H-CT001-V1/CT002 2.2 ms

C200H-NC111/NC112 3.0 ms

C200H-NC211 6 ms

C200H-AD001 2.3 ms

C200H-AD002 2.0 ms

C200H-DA001 2.0 ms

C200H-TS001/TS101 1.8 ms each

C200H-TCjjj
(see note 1)

4.0 ms each

C200H-ASC02 2.0 ms each normally, 6.0 ms for @ format

C200H-IDS01-V1/IDS21 2.5 ms each normally, 6.5 ms for command transfer

C200H-OV001 4.5 ms

C200H-TVjjj
(see note 1)

4.0 ms

C200H-PID0j
(see note 2)

4.0 ms

C200H-FZ001 2.3 ms

C200H-CP114 3.2 ms

Note 1. jjj = 001/002/003/101/102/103

2. j =1/2/3

Group-2 High-density I/O Unit Refresh

Unit Time required

C200H-ID216 0.32 ms

C200H-OD218 0.30 ms

C200H-ID217 0.50 ms

C200H-OD219 0.44 ms

Remote I/O Master Units are serviced only once each cycle. When Special I/O
Units are mounted in Remote I/O Slave Racks, the Remote I/O transmission
time may exceed the cycle time. There may be cycles in which there is no I/O
refresh between the Master and the PC. Inaccurate signals may be sent, espe-
cially when differential instructions are turned ON and OFF.

Within the PC, the watchdog timer measures the cycle time and compares it to a
set value. If the cycle time exceeds the set value of the watchdog timer, a FALS
9F error is generated and the CPUstops. WDT(94) can beused toextend theset
value for the watchdog timer.

Special I/O Units in Remote
I/O Slave Racks

Watchdog Timer and Long
Cycle Times

CycleTim e Section 6-1

220

Even if the cycle time does not exceed the set value of the watchdog timer, a long
cycle time can adversely affect the accuracy of system operations as shown in
the following table.

Cycle time (ms) Possible adverse affects

10 or greater TIMH(15) inaccurate when TC 016 through TC 511 are used.

20 or greater 0.02-second clock pulse not accurately readable.

100 or greater 0.1-second clock pulse not accurately readable and Cycle
Timer Error Flag (25309) turns ON.

200 or greater 0.2-second clock pulse not accurately readable.

6,500 or greater FALS code 9F generated regardless of watchdog timer setting
and the system stops.

6-2 Calculating Cycle Time
The PC configuration, the program, and program execution conditions must be
taken into consideration when calculating the cycle time. This means taking into
account such things as the number of I/O points, the programming instructions
used, and whether or not peripheral devices are employed. This section shows
some basic cycle time calculation examples. To simplify the examples, the in-
structions used in the programs have been assumed to be all either LD or OUT.
The average execution time for the instructions is thus
0.6 .s. (Operating times are given in the table in 6-3 Instruction Execution
Times.)

6-2-1 PC with I/O Units Only
Here, we’ll compute the cycle time for a PC with a CPU21-E, or CPU23-E CPU
that has a Memory Unit with a clock function installed. The CPU controls only I/O
Units, eight on the CPU Rack and five on a 5-slot Expansion I/O Rack. In this PC
configuration, there is also a Programming Console mounted to the CPU that
needs to be taken into consideration. The PC configuration for this would be as
shown below. It is assumed that the program contains 5,000 instructions requir-
ing an average of 0.94 .s each to execute.

CPU Rack

Expansion I/O Rack

12-point Output Units

8-point Output Unit

16-point Input Units

8-point Input Units 8-point Output Units

The equation for the cycle time from above is as follows:
Cycle time = overseeing time + program execution time

+ I/O refreshing time + peripheral device servicing time
The overseeing time is fixed at 3.1 ms.

Calculations

CalculatingCycleTime Section 6-2

221

The program execution time is 4.7 ms (0.94 .s/instruction , 5,000 instructions).
The I/O refresh time would be as follows for two16-point Input Units, four 8-point
Input Units, two 12-point Output Units (12-point Units are treated as 16-point
Units), and five 8-point Output Units controlled by the PC:

8 points

(16 points x 2) + (8 points x 4)
x 40 .s = 0.92 msx 70 .s +

8 points

(16 points x 2) + (8 points x 5)

The Programming Console is mounted to the PC and the total cycle time of oper-
ations 1, 2, 4, and 5 is less than 13 ms, so the peripheral device servicing time is
0.8 ms.
The cycle time would thus be 3.1 ms + 4.7 ms+ 0.9 ms + 0.8 ms = 9.5 ms

6-2-2 PC with Link Units
Here, the cycle time is computed for a PC with a CPU21-E, or CPU23-E CPU
that has a Memory Unit with a clock function installed. The CPU controls three
8-point Input Units, three 8-point Output Units, a Host Link Unit, and a Remote
I/O Master Unit connected to a Remote I/O Slave Rack containing four 16-point
Input Units and four 12-point Output Units. The PCconfiguration for this couldbe
as shown below. It is assumed that the program contains 5,000 instructions re-
quiring an average of 0.94 .s each to execute.

Computer

Slave Rack

Host Link Unit

Remote I/O
Master Unit

CPU Rack

8-point
Input Units

8-point
Output Units

12-point
Output Units

16-point
Input Units

The equation for the cycle time is as follows:
Cycle time = overseeing time + program execution time

+ I/O refreshing time + Host Link Unit servicing time
+ peripheral device servicing time

The overseeing time is fixed at 3.1 ms.
The program execution time is 4.7 ms (0.94 .s/instruction , 5,000 instructions).
The I/O refreshing time would be as follows for three 8-point Input Units and
three 8-point Output Units mounted in theCPU Rack, and eight Units mounted in
a Slave Rack.

+ 1.3 ms + 8 Units x 0.2 ms = 3.23 ms
8 points

(8 points x 3) x 70 .s + (8 points x 3) x 40 .s

Calculations

CalculatingCycleTime Section 6-2

222

A Host Link Unit is mounted, so the Host Link Unit servicing time is 8.0 ms.
The Programming Console is mounted to the PC and the total cycle time, T, of
operations 1, 2, 4, and 5 is greater than 13 ms, so the peripheral device servicing
time is (0.06 x T) ms = (0.06 x 19) ms = 1.14 ms.
The cycle time is 3.1 ms + 8.0 ms + 1.14 ms + 4.7 ms + 3.23 ms = 20.2 ms.

6-3 Instruction Execution Times
The following table lists the execution times for all instructions that are available
for the C200H. The maximum and minimum execution times and the conditions
which cause them are given where relevant. When “word” is referred to in the
Conditions column, it implies the content of any word except for indirectly ad-
dressed DM words. Indirectly addressed DM words, which create longer execu-
tion times when used, are indicated by “*DM.”
Execution times for most instructions depend on whether they are executed with
an ON or an OFF execution condition. Exceptions are the ladder diagram in-
structions OUT and OUT NOT, which require the same time regardless of the
execution condition. The OFF execution time for an instruction can also vary de-
pending on the circumstances, i.e., whether it is in an interlocked program sec-
tion and the execution condition for IL is OFF, whether it is between JMP(04) 00
and JME(05) 00 and the execution condition for JMP(04) 00 is OFF, or whether it
is reset by an OFF execution condition. “R,” “IL,” and “JMP” are used to indicate
these three times.
All execution times are given in microseconds unless otherwise noted.

Instruction Conditions ON execution time (.s) OFF execution time (.s)

LD --- 0.75 ---

LD NOT --- 0.75 ---

AND --- 0.75 ---

AND NOT --- 0.75 ---

OR --- 0.75 ---

OR NOT --- 0.75 ---

AND LD --- 0.75 ---

OR LD --- 0.75 ---

OUT --- 1.13 ---

OUT NOT --- 1.13 ---

TIM Constant for SV 2.25 R: 2.25

IL: 2.25

JMP: 2.25

*DM for SV R: 160

IL: 2.25

JMP: 2.25

CNT Constant for SV 2.25 R: 2.25

IL: 2.25

JMP: 2.25

*DM for SV R: 160

IL: 2.25

JMP: 2.25

NOP(00) --- 0.75 ---

END(01) --- 80 ---

IL(02) --- 59 35

ILC(03) --- 44 35

JMP(04) --- 69 35

Instruction Execution Times Section 6-3

223

Instruction OFF execution time (.s)ON execution time (.s)Conditions

JME(05) --- 47 35

FAL(06) 01 to 99 --- 236 2.25

FAL(06) 00 --- 182 2.25

FALS(07) --- 4.28 ms 2.25

STEP(08) --- 95 2.25

SNXT(09) --- 34 2.25

SFT(10) With 1-word shift register 181 R: 191

IL: 30

JMP: 30

With 250-word shift register 1.44 ms R: 1.81 ms

IL: 30

JMP: 30

KEEP(11) --- 1.13 ---

CNTR(12) Constant for SV 111 R: 85

IL: 49

*DM for SV 205 JMP: 49

DIFU(13) --- 93 Normal: 93

IL: 93

JMP: 84

DIFD(14) --- 92 Normal: 92

IL: 92

JMP: 84

TIMH(15) Interrupt Constant for SV 120 R: 199

Normal cycle 135 IL: 199

Interrupt *DM for SV 120 JMP: 73

Normal cycle 135 R: 291

IL: 291

JMP: 73

WSFT(16) When shifting 1 word 170 3

When shifting 1,000 words using *DM 8.6 ms

RWS(17) When resetting 1 word 388 3.75

When shifting 999 words using *DM 30.3 ms

SCAN(18) Constant for SV 311 3.75

*DM for SV 412

MCMP(19) Comparing 2 words, result word 636 3.75

Comparing 2 *DM, result *DM 890

CMP(20) When comparing a constant to a word 124 3

When comparing two *DM 296

MOV(21) When transferring a constant to a word 88 3

When transferring *DM to *DM 259

MVN(22) When transferring a constant to a word 91 3

When transferring *DM to *DM 261

BIN (23) When converting a word to a word 174 3

When converting *DM to *DM 338

BCD(24) When converting a word to a word 179 3

When converting *DM to *DM 337

ASL(25) When shifting a word 72 2.25

When shifting *DM 158

Instruction Execution Times Section 6-3

224

Instruction OFF execution time (.s)ON execution time (.s)Conditions

ASR(26) When shifting a word 72 2.25

When shifting *DM 158

ROL(27) When rotating a word 77 2.25

When rotating *DM 162

ROR(28) When rotating a word 77 2.25

When rotating *DM 162

COM(29) When inverting a word 67 2.25

When inverting *DM 152

ADD(30) Constant + word bword 153 3.75

*DM + *DM b *DM 415

SUB(31) Constant + word bword 161 3.75

*DM -- *DM b *DM 422

MUL(32) Constant x word bword 480 3.75

*DM x *DM bword 742

DIV(33) Word (constant bword 724 3.75

*DM (*DM b *DM 984

ANDW(34) Constant AND word bword 122 3.75

*DM AND *DM b *DM 371

ORW(35) Constant OR word bword 122 3.75

*DM OR *DM b *DM 371

XORW(36) Constant XOR word bword 122 3.75

*DM XOR *DM b *DM 371

XNRW(37) Constant XNOR word bword 124 3.75

*DM XNOR *DM b *DM 373

INC(38) When incrementing a word 82 2.25

When incrementing *DM 167

DEC(39) When decrementing a word 82 2.25

When decrementing *DM 167

STC(40) --- 27 1.5

CLC(41) --- 27 1.5

MSG(46) --- 98 2.25

LMSG(47) Constant for SV 290 3.75

*DM for SV 367

TERM(48) --- 161 3.75

SYS(49) --- 2 3.75

ADB(50) Constant + word bword 144 3.75

*DM + *DM b *DM 393

SBB(51) Constant -- word bword 147 3.75

*DM -- *DM b *DM 396

MLB(52) Constant x word bword 205 3.75

*DM x *DM b *DM 452

DVB(53) Word (constant bword 476 3.75

*DM (*DM b *DM 704

ADDL(54) Word + word bword 243 3.75

*DM + *DM b *DM 491

SUBL(55) Word -- word bword 255 3.75

*DM -- *DM b *DM 504

Instruction Execution Times Section 6-3

225

Instruction OFF execution time (.s)ON execution time (.s)Conditions

MULL(56) Word x word bword 1.14 ms 3.75

*DM x *DM b *DM 1.39 ms

DIVL(57) Word (word bword 3.25 ms 3.75

*DM (*DM b *DM 3.39 ms

BINL(58) When converting words to words 350 3

When converting *DM to *DM 511

BCDL(59) When converting words to words 588 3

When converting *DM to *DM 750

CMPL(60) When comparing words to words 380 3.75

When comparing *DM to *DM 543

MPRF(61) When refreshing one 32-pt Output Unit 700 3.75

When refreshing ten 32-pt Input Units 3.60 ms

CTW(63) When transferring from words to a word 670 3.75

When transferring *DM to *DM 923

WTC(64) When transferring from a word to words 807 3.75

When transferring *DM to *DM 1.07 ms

HTS(65) Word to word 859 3.75

*DM to *DM 1.00 ms

STH(66) Word to word 744 3.75

*DM to *DM 889

BCNT(67) When counting 1 word 502 3.75

When counting 1,000 words using *DM 100 ms

BCMP(68) Comparing constant to word-designated
table

674 3.75

Comparing *DM b *DM-designated table 926

VCAL69) Trigonometric functions. 488 3.75

Linear approximation with a 256 word
table

2.71 ms

XFER(70) When transferring 1 word 305 3.75

When transferring 1,000 words using *DM 16 ms

BSET(71) When setting a constant to 1 word 209 3.75

When setting *DM ms to 1,000 words
using *DM

4.28 ms

ROOT(72) When taking root of word and placing in a
word

631 3

When taking root of 99,999,999 in *DM
and placing in *DM

1.16 ms

XCHG(73) Between words 156 3

Between *DM 316

SLD(74) When shifting 1 word 193 3

When shifting 1,000 DM words using *DM 33 ms

SRD(75) When shifting 1 word 193 3

When shifting 1,000 DM words using *DM 33 ms

MLPX(76) When decoding word to word 203 3.75

When decoding *DM to *DM 568

DMPX(77) When encoding a word to a word 225 3.75

When encoding *DM to *DM 551

SDEC(78) When decoding a word to a word 235 3.75

When decoding *DM to *DM 571

Instruction Execution Times Section 6-3

226

Instruction OFF execution time (.s)ON execution time (.s)Conditions

FDIV(79) Word (word bword (equals 0) 632 3.75

Word (word bword (doesn’t equal 0) 1.77 ms

*DM (*DM b *DM 2.1 ms

DIST(80) Constant bword + (word) 246 3.75

*DM b (*DM + (*DM)) 481

COLL(81) (Word + (word)) bword 262 3.75

(*DM + (*DM)) b *DM 497

MOVB (82) When transferring word to a word 158 3.75

When transferring *DM to *DM 357

MOVD(83) When transferring word to a word 195 3.75

When transferring *DM to *DM 399

SFTR(84) When shifting 1 word 284 3.75

When shifting 1,000 DM words using *DM 13.8 ms

TCMP(85) Comparing constant to words in a
designated table

542 3.75

Comparing *DM b *DM-designated table 830

ASC(86) Word bword 270 3.75

*DM b *DM 454

INT(89) When reading interrupt mask 265 3.75

When masking and clearing interrupt 265

SEND(90) 1-word transmit 563 3.75

1000-word transmit 752

SBS(91) --- 158 2.25

SBN(92) --- --- ---

RET(93) --- 198 1.5

WDT(94) --- 35 2.25

IORF(97) 1-word refresh 450 3

30-word refresh 4 ms

RECV(98) 1-word refresh 559 3.75

1000-word refresh 764

Instruction Execution Times Section 6-3

227

6-4 I/O Response Time

The I/O response time is the time it takes for the PC to output a control signal
after it has received an input signal. The time it takes to respond depends on the
cycle time and when the CPU receives the input signal relative to the input re-
fresh period. The I/O response times for a PCnot ina Link System arediscussed
below. For response times for PCs with Link Systems, refer to the relevant Sys-
tem Manual.

The minimum and maximum I/O response time calculations described below
are for where 00000 is the input bit that receives the signal and 00200 is the out-
put bit corresponding to the desired output point.

00000

00200

The PC responds most quickly when it receives an input signal just prior to the
I/O refresh period in the cycle. Once the input bit corresponding to the signal has
been turned ON, the program will have to be executed once to turn ON the out-
put bit for the desired output signal and then the I/O refresh operation would
have to be repeated to refresh the output bit. The I/O response time in this case
is thus found by adding the input ON-delay time, the cycle time, and the output
ON-delay time. This situation is illustrated below.

Cycle time

Input
signal

Output
signal

Cycle

Cycle time

I/O refresh

I/O response time

Output ON delay

Input
ON delay

Instruction
execution

Instruction
execution

Instruction
execution

CPU reads
input signal

Minimum I/O response time = input ON delay + cycle time + I/O refresh time +
output ON delay

The PC takes longest to respond when it receives the input signal just after the
I/O refresh phase of the cycle. In this case the CPU does not recognize the input
signal until the end of the next cycle. The maximum response time is thus one
cycle longer than the minimum I/O response time, except that the I/O refresh

Minimum I/O Response
Time

Maximum I/O Response
Time

I/O ResponseTime Section 6-4

228

time would not need to be added in because the input comes just after it rather
than before it.

Cycle time

Input
signal

Output
signal

Cycle

Cycle time

I/O refresh

I/O response time

Input
ON delay

Instruction
execution

Instruction
execution

Instruction
execution

CPU reads
input signal

Output
ON delay

Cycle time

Maximum I/O response time = input ON delay + (cycle time x 2) + output ON
delay

The data in the following table would produce the minimum and maximum cycle
times shown calculated below.

Input ON-delay 1.5 ms

Output ON-delay 15 ms

Cycle time 20 ms

Minimum I/O response time = 1.5 + 20 + 15 = 36.5 ms
Maximum I/O response time = 1.5 + (20 x 2) +15 = 56.5 ms

Calculation Example

I/O ResponseTime Section 6-4

229

SECTION 7
Program Monitoring and Execution

Thissectionprovidestheproceduresform onitoringandcontrollingthePC throughaProgram m ingConsole.Ifyouareusing
aGPC,aFIT,oracom puterrunningLSS,refertotheOperation Manual forproceduresonthese.

7-1 M onitoringOperationandM odifyingData 230....................................
7-1-1 Bit/W ordM onitor 230...
7-1-2 ForcedSet/Reset 233...
7-1-3 ForcedSet/ResetCancel 235...
7-1-4 Hexadecim al/BCD DataM odification 236................................
7-1-5 Hex/ASCIIDisplayChange 237...
7-1-6 3-wordM onitor 238..
7-1-7 3-wordDataM odification 239..
7-1-8 BinaryM onitor 240...
7-1-9 BinaryDataM odification 241..
7-1-10 ChangingTim er/CounterSV 243..

7-2 Program BackupandRestoreOperations 246.....................................
7-2-1 SavingProgram M em oryData 246......................................
7-2-2 RestoringorCom paringProgram M em oryData 249........................
7-2-3 Saving,Restoring,andCom paringDM Data 250...........................

230

7-1 Monitoring Operation and Modifying Data
The simplest form of operation monitoring is to display the address whose oper-
and bit status is to be monitored using the Program Read or one of the search
operations. As long as the operation is performed in RUN or MONITOR mode,
the status of any bit displayed will be indicated.

This section provides other procedures for monitoring data as well as proce-
dures for modifying data that already exists in a data area. Data that can be
modified includes the PV (present value) and SV (set value) for any timer or
counter.

All monitor operations in this section can be performed in RUN, MONITOR, or
PROGRAM mode and can be cancelled by pressing CLR.

All data modification operations except for timer/counter SV changes are per-
formed after first performing one of the monitor operations. Data modification is
possible in either MONITOR or PROGRAM mode, but cannot be performed in
RUN mode.

7-1-1 Bit/Word Monitor
The status of any bit or word in any data area can be monitored using the follow-
ing operation. Although the operation is possible in any mode, ON/OFF status
displays will be provided for bits in MONITOR or RUN mode only.

The Bit/Digit Monitor operation can be entered either from a cleared display by
designating the first bit or word to be monitored or it can be entered from any
address in the program by displaying the bit or word address whose status is to
be monitored and pressing MONTR.

When a bit is monitored, it’s ON/OFF status will be displayed (in MONITOR or
RUN mode); when a word address is designated other than a timer or counter,
the digit contents of the word will be displayed; and when a timer or counter num-
ber is designated, the PV of the timer will be displayed and a small box will ap-
pear if the completion flag of a timer or counter is ON. When multiple words are
monitored, a caret will appear under the leftmost digit of the address designation
to help distinguish between different addresses. The status of TR bits and SR
flags (e.g., the arithmetic flags), cleared when END(01) is executed, cannot be
monitored.

Up to six memory addresses, either bits, words, or a combination of both, can be
monitored at once, although only three of these are displayedat any one time. To
monitor more than one address, return to the start of the procedure and continue
designating addresses. Monitoring of all designated addresses will be main-
tained unless more than six addresses are designated. If more than six ad-
dresses are designated, the leftmost address of those being monitored will be
cancelled.

To display addresses that are being monitored but are not presently on the Pro-
gramming Console display, press MONTR without designating another ad-
dress. The addresses being monitored will be shifted to the right. As MONTR is
pressed, the addresses being monitored will continue shifting to the right until
the rightmost address is shifted back onto the display from the left.

During a monitor operation the up and down keys can be pressed to increment
and decrement the leftmost address on the display and CLR can be pressed to
cancel monitoring the leftmost address on the display. If the last address is can-
celled, the monitor operation will be cancelled. The monitor operation can also
be cancelled regardless of the number of addresses being monitored by press-
ing SHIFT and then CLR.

LD and OUT can beused only to designate the first address tobe displayed; they
cannot be used when an address is already being monitored.

M onitoringOperation andM odifyingData Section 7-1

231

Key Sequence

Cancels monitor
operation

Clears leftmost
address

The following examples show various applications of this monitor operation.

Program Read then Monitor

Indicates Completion flag is ON

Monitor operation
is cancelled

00100

00100READ
TIM 000

T000
1234

T0001
â0000

00100
TIM 001

Examples

M onitoringOperation andM odifyingData Section 7-1

232

Bit Monitor

00000

00000
LD 00001

00001
^ ON

00000
CONT 00001

Word Monitor

00000

00000
CHANNEL 000

00000
CHANNEL LR 01

cL01
FFFF

cL00
0000

M onitoringOperation andM odifyingData Section 7-1

233

Multiple Address Monitoring

00000

00000
TIM 000

T000
0100

00000T000
0100

00001T000
0100

00001T000
OFF 0100

D000000001T000
ÔFF 0100

D000000001T000
10FF^OFF 0100

T000D000000001
010010FF^OFF

D000000001
10FF^OFF

0001
OFF

00000
CONT 00001

00000
CHANNEL DM 0000

0000000001
S ONR OFF

Indicates Force Reset
in operation.

Indicates Force Set
in operation.

Cancels monitoring of
leftmost address

Monitor operation
canceled

7-1-2 Forced Set/Reset
When the Bit/Digit Monitor operation is being performed and a bit, timer, or
counter address is leftmost on the display, PLAY/SET can be pressed to turnON
thebit, start the timer, or increment the counter and REC/RESET can bepressed
to turn OFF the bit or reset the timer or counter. Timers will not operate in PRO-
GRAM mode. SR bits cannot be turned ON and OFF with this operation.

M onitoringOperation andM odifyingData Section 7-1

234

Bit status will remain ON or OFF only as long as the key is held down; the original
status will return as soon as the key is released. If a timer is started, the comple-
tion flag for it will be turned ON when SV has been reached.
SHIFT and PLAY/SET or SHIFT and REC/RESET can be pressed to maintain
the status of the bit after the key is released. The bit will not return to its original
status until the NOT key is pressed, or one of the following conditions is met.
1. The Force Status Clear operation is performed.
2. The PC mode is changed.
3. Operation stops due to a fatal error or power interruption.
4. The I/O Table Registration operation is performed.
This operation can be used in MONITOR mode to check wiring of outputs from
the PC prior to actual program execution. This operation cannot be used in RUN
mode.

Note The forced set/reset bit status will be maintained when switching from PRO-
GRAM to MONITOR mode if the Force Status Hold Flag is ON and has been
enabled with the SET SYSTEM instruction (SYS(49)).

Key Sequence

The following example shows how either bits or timers can be controlled with the
Force Set/Reset operation. The displays shown below are for the following pro-
gram section.

Address Instruction Data

00200 LD 00002

00201 TIM 000

0123

00202 LD TIM 000

00205 OUT 00500

00002

TIM 000
00500

012.3 sTIM 000

#0123

The following displays show what happens when TIM 000 is set with 00100 OFF
(i.e., 00500 is turned ON) and what happens when TIM 000 is reset with 00100

Example

M onitoringOperation andM odifyingData Section 7-1

235

ON (i.e., timer starts operation, turning OFF 00500, which is turned back ON
when the timer has finished counting down the SV).

(This example is performed in MONITOR mode.)

Monitoring
00100 and
00500.

Indicates that force set/reset is in progress.

Indicates that the time is up.

Monitoring

TIM 000.

Setting TIM 000
turns ON 00500.

Returns to the beginning
when the key is released.

Display with 0010 originally
ON.

Timer starts timing, turning
00500 OFF.*

When the time is up, 00500
goes ON again.

*Timing not done in PROGRAM mode.

0010000500
áOFF^OFF

T0000010000500
^OFF^OFF

T0000010000500
0123̂ OFF^OFF

T0000010000500
á0000̂ OFF^ ON

T0000010000500
0123̂ OFF^OFF

T0000010000500
â0000̂ ON^ ON

T0000010000500
á0123̂ ON^OFF

T0000010000500
0122̂ ON^OFF

T0000010000500
â0000̂ ON^ ON

0010000500
^OFF^OFF

0010000500
á ON^OFF

7-1-3 Forced Set/Reset Cancel
This operation restores the status of all bits in the I/O, IR, TIM, CNT, HR, AR, or
LR areas which have been force set or reset. It can be performed in PROGRAM
or MONITOR mode.

Key Sequence

When the PLAY/SET and REC/RESET keys are pressed, a beeper will sound. If
you mistakenly press the wrong key, then press CLR and start again from the
beginning.

M onitoringOperation andM odifyingData Section 7-1

236

The following example shows the displays that appear when Restore Status is
carried out normally.

00000

00000

00000FORCE RELE?

00000FORCE RELE
END

7-1-4 Hexadecimal/BCD Data Modification
When the Bit/Digit Monitor operation is being performed and a BCD or hexadeci-
mal value is leftmost on the display, CHG can be input to change the value. SR
words cannot be changed.
If a timer or counter is leftmost on the display, the PV will be displayed and will be
the value changed. See 7-1-10 Changing Timer/Counter SV for the procedure to
change SV. PV can be changed in MONITOR mode only when the timer or
counter is operating.
To change contents of the leftmost word address, press CHG, input the desired
value, and press WRITE

Key Sequence
Word currently
monitored on
left of display.

[Data]

Example

M onitoringOperation andM odifyingData Section 7-1

237

The following example shows the effects of changing the PV of a timer.

This example is in MONITOR mode

Timing

Timing

PV changed

Timing

Timing

00000

00000
TIM 000

T000
0122

00000PRES VAL?
T0000119????

00000PRES VAL?
T00001000200

T000
0199

7-1-5 Hex/ASCII Display Change
This operation converts DM data displays from 4-digit hexadecimal data to AS-
CII and vice versa.

Example

M onitoringOperation andM odifyingData Section 7-1

238

Key Sequence

Word currently

displayed.

00000

00000
CH DM 0000

D0000
4412

D0000
AB

D0000
4142

7-1-6 3-word Monitor
To monitor three consecutive words together, specify the lowest numbered
word, press MONTR, and then press EXT to display the data contents of the
specified word and the two words that follow it.
A CLR entry changes theThree-word Monitor operation toa single-worddisplay.

Example

M onitoringOperation andM odifyingData Section 7-1

239

Key Sequence

Single-word monitor in progress

00000

00000
CHANNEL DM 0000

D0000
89AB

D0002D0001D0000
0123456789AB

D0003D0002D0001
ABCD 01234567

D0004D0003D0002
EF00ABCD 0123

D0005D0004D0003
1111EF00ABCD

D0004D0003D0002
EF00ABCD 0123

D0002
0123

7-1-7 3-word Data Modification

This operation changes the contents of a word during the 3-Word Monitor opera-
tion. The blinking square indicates where the data can be changed. After the
new data value is keyed in, pressing WRITE causes the original data to be over-
writtenwith thenew data. If CLR is pressedbefore WRITE, the changeoperation
will be cancelled and the previous 3-word Monitor operation will resume.

Key Sequence

3 words currently
displayed [Data]

Example

M onitoringOperation andM odifyingData Section 7-1

240

Example

3-word Monitor
in progress.

Stops in the middle
of monitoring.

Resumes previous
monitoring.

D0002D0001D0000
0123456789AB

D00023CHCHANG?
á0123456789AB

D00023CHCHANG?
á0001456789AB

D00023CHCHANG?
0001á456789AB

D00023CHCHANG?
0001á234589AB

D0002D0001D0000
0001234589AB

D0002D0001D0000
0001456789AB

7-1-8 Binary Monitor

You can specify that the contents of a monitored word be displayed in binary by
pressing SHIFT and MONTR after the word address has been input. Words can
be successively monitored by using the up and down keys to increment and dec-
rement the displayed word address. To clear the binary display, press CLR.

Key Sequence

[Word]

Binary
monitor clear

All monitor
clear

M onitoringOperation andM odifyingData Section 7-1

241

00000

00000
CHANNEL 000

c000M ONTR
0000000000001111

c001M ONTR
0000010101010100

00000
CHANNEL 001

00000

00000
CHANNEL DM 0000

D0000
FFFF

D0000M ONTR
1111111111111111

D0000
FFFF

00000
CHANNEL DM 0000

0000S0100R0110SR

Indicates Force Reset
in effect

Indicates Force Set
in effect

7-1-9 Binary Data Modification
This operation assigns a new 16-digit binary value to an IR, HR, AR, LR, or DM
word.

The cursor, which canbe shifted to the left with the upkey and to the right with the
down key, indicates the position of the bit that can be changed. After positioning
to the desired bit, a 0 or a 1 can then be entered as the new bit value. The bit can
also be Force Set or Force Reset by pressing SHIFT and either PLAY/SET or
REC/RESET. An S or R will then appear at that bit position. Pressing the NOT
key will clear the force status, S will change to 1, and R to o. After a bit value has
been changed, the blinking square will appear at the next position to the right of
the changed bit.

Example

M onitoringOperation andM odifyingData Section 7-1

242

Key Sequence

Word currently
displayed in binary.

(Force Status Clear)

M onitoringOperation andM odifyingData Section 7-1

243

IR bit 00115 IR bit 00100

00000

00000
CHANNEL 000

00000
CHANNEL 001

c001M ONTR
0000010101010101

c001 CHG?
á000010101010101

c001 CHG?
1á00010101010101

c001 CHG?
10á0010101010101

c001 CHG?
100á010101010101

c001 CHG?
100Sá10101010101

c001 CHG?
100á010101010101

c001 CHG?
10áS010101010101

c001M ONTR
10RS010101010101

c001 CHG?
1áRS010101010101

7-1-10 Changing Timer/Counter SV
There are two ways to change the SV of a timer or counter. It can be done either
by inputting a new value; or by incrementing or decrementing the current SV.
Either method can be used only in MONITOR or PROGRAM mode. In MONI-
TOR mode, the SV can be changed while the program is being executed. Incre-
menting and decrementing the SV is possible only when the SV has been en-
tered as a constant.
To use either method, first display the address of the timer or counter whose SV
is to be changed, presses the down key, and then press CHG. The new value
can then be input numerically and WRITE pressed to change the SV or EXT can
be pressed followed by the up and down keys to increment and decrement the
current SV. When the SV is incremented and/or decremented, CLR can be
pressed once to change the SV to the incremented or decremented value but
remaining in the display that appeared when EXT was pressed or CLR can be
pressed twice to return to the original display with the new SV.
This operation can be used to change a SV from designation as a constant to a
word address designation and vice versa.

Example

M onitoringOperation andM odifyingData Section 7-1

244

Key Sequence

The following examples show inputting a new constant, changing from a con-
stant to an address, and incrementing to a new constant.

00000

00000
TIM 000

00201SRCH
TIM 000

00201TIM DATA
#0123

00201TIM DATA
T000#0123#????

00201TIM DATA
T000#0123#0124

00201TIM DATA
#0124

00201DATA?
T000#0123 c???

00201DATA?
T000#0123 c010

00201TIM DATA
010

Example

Inputting New SV and
Changing to Word
Designation

M onitoringOperation andM odifyingData Section 7-1

245

Returns to original display
with new SV

Current SV (during
change operation)

SV before the change

00000

00000
TIM 000

00201SRCH
TIM 000

00201TIM DATA
#0123

00201TIM DATA
T000#0123#????

00201DATA ?U/D
T000#0123#0123

00201DATA ?
T000#0123#0122

00201DATA ?
T000#0123#0123

00201DATA ?
T000#0123#0124

00201DATA ?
T000#0124#????

00201TIM DATA
#0124

Incrementing and
Decrementing

M onitoringOperation andM odifyingData Section 7-1

246

7-2 Program Backup and Restore Operations
Both Program Memory (UM) and DM areadata canbe backed-upon astandard,
commercially available cassette tape recorder. Any dependable magnetic cas-
sette tape of adequate length will suffice. To save a 8K-word program, the tape
must be about 15 minutes long (about 2 min. per K word of data). Always allow
for about 5 seconds of blank leader tapebefore the taped databegins. Storeonly
one program or section of DM area on a single side of a tape; there is no way to
identify separate programs or DM areas stored on the same side of the tape.

Note UM and DM can be recorded together in a single cassette if the file number
of the UM is different from that of the DM and also if the capacity of the cas-
sette permits.

Be sure to clearly label all cassette tapes.

Use patch cords to connect the cassette recorder earphone (or LINE-OUT) jack
to the Programming Console EAR jack and the cassette recorder microphone
(or LINE-IN) jack to the Programming Console MIC jack. Set the cassette re-
corder volume and frequency equalizer controls to maximum levels.

The PC must be in PROGRAM mode for all cassette tape operations.

While the operation is in progress, the cursor will blink and the block count will be
incremented on the display.

Cassette tape operations may be halted at any time by pressing CLR.

The following error messages may appear during cassette tape operations.

Message Meaning and appropriate response

0000ERR *******
FILE NO.********

File number on cassette and designated file number are
not the same. Repeat the operation using the correct file number.

****M T VER ERR Cassette tape contents differs from that in the PC. Check content
of tape and/or the PC.

****M T ERR Cassette tape is faulty. Replace it with another.

7-2-1 Saving Program Memory Data

This operation is used to copy the content of Program Memory to a cassette
tape. The procedure is as follows:

1,2,3... 1. Press EXT and the 0 key to specify Program Memory.

2. Input a file number for the data that is to be saved.

3. Specify the start and stop addresses of the section of Program Memory that
is to be recorded. When the start address is designated, the default stop ad-
dress will indicate the last address of the Program Memory. Determine the
address of END (01) and designate this address as the stop address. Do not
designate a stop address greater than this one.

4. Start cassette tape recording. Use only reliable, high quality data use tapes.

5. Within 5 seconds, press SHIFT and REC/RESET.

Program saving continues until END(01) or the stop address is reached. At that
time the program size in Kwords is displayed. If the END(01) is reached before
the stop address, the recording operation will continue, however, through the
designated stop address unless CLR is pressed to cancel.

Error Messages

Program BackupandRestoreOperations Section 7-2

247

Key Sequence

EXT
A

0 WRITECLR

WRITE Start recording with the
tape recorder.

SHIFT
REC

RESET

[File no.] [Start address]

[Stop address]

After about 5 seconds**
(Cancel with the CLR key).

**These times take the cassette leader tape into consideration according to the following:
a) When recording to tape, the leader tape needs to be allowed to pass before the data
transmission to the tape player starts.

Program BackupandRestoreOperations Section 7-2

248

b) When restoring from tape or comparing data, the Programming Console needs to be ready to
receive data before the data is transfered from the tape.

Selecting
Program Memory

Starting address of
data to be recorded

Last address

Stop address
specified

Blinking

Continue within 5 seconds

Recording in progress

When it comes to END

Stop recording with CLR

Saved up to stop address

Start recording

00000

00000M T
UM :0DM :1

00000M T
FILE NO.00000000

00000M T
FILE NO.86031400

00000M T
START ADDR 00000

00000M T
START ADDR 00345

00345M T
STOP ADDR 03890

00345M T
STOP ADDR 05789

00345M T RECORD á
FILE NO.86031400

02420M T RECORD á
FILE NO.86031400

04801M T RECORD á
END (01)(05.6KW)

04801M T DISCONTD
END (01)(05.6KW)

05789RECORD END
END (01)(06.8KW)

Example

Program BackupandRestoreOperations Section 7-2

249

7-2-2 Restoring or Comparing Program Memory Data
This operation is used to restore Program Memory data from a cassette tape or
tocompareProgram Memory datawith thecontents ona cassette tape. Thepro-
cedure is as follows:

1,2,3... 1. Press EXT and the 0 key to specify Program Memory.
2. Specify the number of the file to be restored or compared.
3. Specify the start address for the data that is to be restored or compared.
4. Start playing the cassette tape.
5. Within 5 seconds, press SHIFT and PLAY/SET to restore data or VER to

compare data.
Program restoration or comparison continues until END(01) is reached or until
the tape is finished, at which time the program size in Kwords is displayed. At
that time the program size in Kwords is displayed. Even if END(01) is reached
before the end of the tape, the restoring or comparison operation will continue
through the end of the tape unless CLR is pressed to cancel.

Key Sequence

PLAY

SET

EXT
A

0 WRITECLR

SHIFTStart tape recorder
playback.

[File no.] [Start address]

Within about 5 seconds**

**These times take the cassette leader tape into consideration according to the following:
a) When recording to tape, the leader tape needs to be allowed to pass before the data
transmission to the tape player starts.
b) When restoring from tape or comparing data, the Programming Console needs to be ready to
receive data before the data is transfered from the tape.

Program BackupandRestoreOperations Section 7-2

250

Restoring in progress

END reached

Restored up to END

Stop restoring using CLR

Comparison in progress

END reached

Stop comparison using CLR

Compared up to end of tape

00000

00000M T
UM :0DM :1

00000M T
FILE NO.00000000

00345M T PLAY á
FILE NOâ86031400

00420M T PLAY á
FILE NOâ86031400

04801M T PLAY á
END (01)(05.6KW)

04801M T DISCONTD
END (01)(05.6KW)

05789PLAY END
END (01)(05.6KW)

00345M T VER á
FILE NOâ86031400

01420M T VER á
FILE NOâ86031400

04801M T VER á
END (01)(05.6KW)

04801M T DISCONTD
(05.6KW)

05789VER OK
END (01)(05.6KW)

00000M T
FILE NO.86031400

00000M T
START ADDR 00000

00000M T
START ADDR 00345

7-2-3 Saving, Restoring, and Comparing DM Data

The procedures for saving, restoring and comparing DM area data are identical
to those for Program Memory except that the DM area is specified and start and
stop addresses are not required. Cassette tape operations for DM area data will
be continued to the end of the DM area or the end of the cassette tape unless

Example

Program BackupandRestoreOperations Section 7-2

251

CLR is pressed to cancel. Refer to the relevant operation in the preceding sec-
tions for details. An example for each operation is given below.

Key Sequence

Saving

Restoring

Comparing

EXTCLR [File no.]

VER

B
1

Start tape recorder
playback.

SHIFT

SHIFT

REC

RESET

PLAY

SET

Start tape recorder
recording.

5 second leader tape**

**These times take the cassette leader tape into consideration according to the following:
a) When recording to tape, the leader tape needs to be allowed to pass before the data
transmission to the tape player starts.
b) When restoring from tape or comparing data, the Programming Console needs to be ready to
receive data before the data is transfered from the tape.

Selecting the
DM area

Start recording

Wait about 5 seconds

Recording in progress

Recording stopped using CLR key.

Recording stops at the end.

00000

00000M T
UM :0 DM :1

D0000M T
FILE NO.00000000

D0000M T
FILE NO.00000012

D0000M T RECORDá
FILE NO.00000012

D0127M T RECORDá
FILE NO.00000012

D0127M T DISCONTD
FILE NO.00000012

D1999 OK
FILE NO.00000012

Example: Saving DM Data

Program BackupandRestoreOperations Section 7-2

252

Selecting the
DM area

Start tape playback

Within 5 seconds

Restoring in progress

Restoring stopped using CLR key.

Restoring stopped at the end.

00000

00000M T
UM :0 DM :1

D0000M T
FILE NO.00000000

D0000M T
FILE NO.00000012

D0000M T PLAY á
FILE NO.00000012

D0127M T PLAY á
FILE NO.00000012

D0127M T DISCONTD
FILE NO.00000012

D1999M T END
FILE NO.00000012

Blinking

Example: Restoring DM
Data

Program BackupandRestoreOperations Section 7-2

253

Selecting the
DM area

Start tape playback

Within 5 seconds

Comparison in progress

Stopped verification using CLR Key

Verification stopped at the end.

00000

00000M T
UM :0 DM :1

D0000M T
FILE NO.00000000

D0000M T
FILE NO.00000012

D0000M T VER á
FILE NO.00000012

D0127M T VER á
FILE NO.00000012

D0127M T DISCONTD
FILE NO.00000012

D1999VER OK
FILE NO.00000012

Blinking

Example: Comparing DM
Data

Program BackupandRestoreOperations Section 7-2

255

SECTION 8
Troubleshooting

TheC200H providesself-diagnosticfunctionstoidentifym anytypesofabnorm alsystem conditions.Thesefunctionsm ini-
m izedowntim eandenablequick,sm ootherrorcorrection.

Thissectionprovidesinform ationonhardwareandsoftwareerrorsthatoccurduringPC operation.Program inputerrorsare
describedin4-7 Inputting, Modifying, and Checking the Program.AlthoughdescribedinSection3 MemoryAreas,flagsand
othererrorinform ationprovidedinSR andAR areasarelistedin 8-5 Error Flags.

8-1 Alarm Indicators 256...
8-2 Program m edAlarm sandErrorM essages 256.....................................
8-3 ReadingandClearingErrorsandM essages 256...................................
8-4 ErrorM essages 256..
8-5 ErrorFlags 260...

!

256

8-1 Alarm Indicators
The ALARM/ERROR indicator on the front of the CPU provides visual indication
of an abnormality in the PC. When the indicator is ON (ERROR), a fatal error
(i.e., ones that will stop PC operation) has occurred; when the indicator is flash-
ing (ALARM), a nonfatal error has occurred. This indicator is shown in 2-1 Indi-
cators.

Caution The PC will turn ON the ALARM/ERROR indicator, stop program execution, and
turn OFF all outputs from the PC for most hardware errors, for certain fatal soft-
ware errors, or when FALS(07) is executed in the program (see tables on follow-
ing pages). PC operation will continue for all other errors. It is the user’s respon-
sibility to take adequate measures to ensure that a hazardous situation will not
result from automatic system shutdown for fatal errors and to ensure that proper
actions are taken for errors for which the system is not automatically shut down.
System flags and other system and/or user-programmed error indications can
be used to program proper actions.

8-2 Programmed Alarms and Error Messages
FAL(06), FALS(07), and MSG(46) can be used in the program to provide
user-programmed informationon error conditions. With these three instructions,
the user can tailor error diagnosis to aid in troubleshooting.
FAL(06) is used with a FAL number other than 00, which is output to the SR area
when FAL(06) is executed. Executing FAL(06) will not stop PC operation or di-
rectly affect any outputs from the PC.
FALS(07) is also used with a FAL number, which is output to the same location in
the SR area when FALS(07) is executed. Executing FALS(07) will stop PC op-
eration and will cause all outputs from the PC to be turned OFF.
When FAL(06) is executed with a functionnumber of 00, thecurrent FALnumber
contained in the SR area is cleared and replaced by another, if more have been
stored in memory by the system.
When MSG(46) is used a message containing specified data area words is dis-
played onto the Programming Console or another Programming Device.
The use of these instructions is described in detail in Section 5 Instruction Set.

8-3 Reading and Clearing Errors and Messages
System error messages can be displayed onto a Data Access Console, as well
as the Programming Console or other Programming Device.
On the Programming Console, press the CLR, FUN, and MONTR keys. If there
are multiple error messages stored by the system, the MONTR key can be
pressedagain toaccess thenext message. If thesystem is in PROGRAM mode,
pressing the MONTR key will clear the error message, so be sure to write down
all message errors as you read them. (It is not possible to clear an error or ames-
sage while in RUN or MONITOR mode; the PC must be in PROGRAM mode.)
When all messages have been cleared, “ERR CHK OK” will be displayed.
Details on accessing error messages from the Programming Console are pro-
vided in 7-1 Monitoring Operation and Modifying Data. Procedures for the GPC,
LSS, and FIT are provided in the relevant Operation Manuals.

8-4 Error Messages
There are basically three types of errors for which messages are displayed: in-
itialization errors, non-fatal operating errors, and fatal operating errors. Most of

ErrorM essages Section 8-4

257

these are also indicated by FAL number being transferred to the FAL area of the
SR area.
The type of error can be quickly determined from the indicators on the CPU, as
described below for the three types of errors. If the status of an indicator is not
mentioned in the description, it makes no difference whether it is lit or not.
After eliminating the cause of an error, clear the error message from memory
before resuming operation.
Asterisks in the error messages in the following tables indicate variable numeric
data. An actual number would appear on the display.

The following error messages appear before program execution has been
started. The POWER indicator will be lit and the RUN indicator will not be lit for
either of these. The RUN output will be OFF for each of these errors.

Error and message FAL no. Probable cause Possible correction

Waiting for start input

CPU W AITãG

None Start input on CPU Power
Unit is OFF.

Short start input terminals
on CPU Power Unit.

CPU W AITãG

Waiting for Special I/O,
High-density I/O Units

None A Special I/O Unit has not
initialized.

Perform the I/O Table Read
operation to check unit
numbers. Replace Unit if it
is indicated by “$” only in
the I/O table.

(High-density I/O Units will
not appear on I/O Table
Read display for all
peripheral devices.)

CPU W AITãG

Waiting for Remote I/O None Power to Remote I/O Unit is
off or terminator cannot be
found.

Check power supply to
Remote I/O Units,
connections between
Remote I/O Units, and
terminator setting.

Initialization Errors

ErrorM essages Section 8-4

258

The following error messages appear for errors that occur after program execu-
tion has been started. PC operation and program execution will continue after
one or more of these errors have occurred. For each of these errors, the
POWER and RUN indicators will be lit and the ALARM/ERROR indicator will be
flashing. The RUN output will be ON.

Error and message FAL no. Probable cause Possible correction

FAL error

SYS FAIL FAL**

01 to 99 FAL(06) has been executed
in program. Check the FAL
number to determine
conditions that would cause
execution (set by user).

Correct according to cause
indicated by FAL number
(set by user).

Cycle time overrun

CYCLE TIM E OVER

F8 Watchdog timer has
exceeded 100 ms.

Program cycle time is
longer than recommended.
Reduce cycle time if
possible.

I/O table verification error

I/O VER ERR

E7 Unit has been removed or
replaced by a different kind
of Unit, making I/O table
incorrect.

Use I/O Table Verify
Operation to check I/O table
and either connect dummy
Units or register the I/O
table again.

RM TE I/O ERR

Remote I/O error

*
Remote I/O
Master Unit number

B0 or B1 Error occurred in
transmissions between
Remote I/O Units.

Check transmission line
between PC and Master
and between Remote I/O
Units.

SPECIAL UNIT ERR

Special I/O error D0 Error has occurred in PC
Link Unit, Remote I/O
Master Unit, between a
Host, SYSMAC LINK, or
SYSMAC NET Link Unit
and the CPU, or in refresh
between Special I/O Unit
and the CPU.

Determine the unit number
of the Unit which caused the
error (AR 00), correct the
error, and toggle the
appropriate Restart Bit in
AR 01 or SR 252. If the Unit
does not restart, replace it.

Group-2 High-density I/O error

SYS FAIL FAL 9A

9A An error has occurred
during data transmission
between the CPU and a
Group-2 High-density I/O
Unit.

Determine the unit number
of the Unit which caused the
error (AR 02), replace the
Unit, and try to power-up
again.

Battery error

BATT LOW

F7 Backup battery in the CPU
or RAM/EEPROM Memory
Unit is missing or its voltage
has dropped.

Determine which battery
caused the error (AR 2404),
check battery, and replace if
necessary.

The following error messages appear for errors that occur after program execu-
tion has been started. PC operation and program execution will stop and all out-
puts from the PC will be turned OFF when any of the following errors occur. No
CPU indicators will be lit for the power interruption error. For all other fatal oper-
ating errors, the POWER and ALARM/ERROR indicators will be lit. The RUN
output will be OFF.

Non-fatal Operating Errors

Fatal Operating Errors

ErrorM essages Section 8-4

259

Error and message FAL no. Probable cause Possible correction

Power interruption
No message.

None Power has been
interrupted for at least
10 ms.

Check power supply voltage
and power lines. Try to
power-up again.

No message, or the message displayed

before the error.

CPU error None Watchdog timer has
exceeded maximum
setting (default setting:
130 ms).

Restart system in PROGRAM
mode and check program.
Reduce cycle time or reset
watchdog timer if longer time
required. (Consider effects of
longer cycle time before
resetting.)

Memory error

M EM ORY ERR

F1 Memory Unit is
incorrectly mounted or
missing, a Checksum
error has occurred, or
there is an incorrect
instruction.

Check Memory Unit to make
sure it is mounted and backed
up properly. Perform a Program
Check Operation to locate
cause of error. If error not
correctable, try inputting
program again.

No END(01) instruction

NO END INST

F0 END(01) is not written
anywhere in program.

Write END(01) at the final
address of the program.

I/O bus error

I/O BUS ERR
Rack no.*

C0 to C2 Error has occurred in
the bus line between the
CPU and I/O Units.

The rightmost digit of the FAL
number will indicate the number
of the Rack where the error was
detected. Check cable
connections between the I/O
Units and Racks.

Too many Units

I/O UNIT OVER

E1 Two or more Special I/O
Units are set to the
same unit number or two
or more Group-2
High-density I/O Units
are set to the same I/O
number or I/O word.

The I/O number of a
64-pt Group-2
High-density I/O Unit is
set to 9.

Two SYSMAC NET Link
or SYSMAC LINK Units
share the same
operating level.

Perform the I/O Table Read
operation to check unit
numbers, and eliminate
duplications. (High-density I/O
Units other than Group-2 are
Special I/O Units, too.)

Set unit numbers of 64-pt
Group-2 High-density I/O Units
to numbers other than 9.

Check the SYSMAC NET Link
and SYSMAC LINK Unit
operating levels and eliminate
duplications.

Input-output I/O table error

I/O SET ERROR

E0 Input and output word
designations registered
in I/O table do no agree
with input/output words
required by Units
actually mounted.

Check the I/O table with I/O
Table Verification operation and
check all Units to see that they
are in correct configuration.
When the system has been
confirmed, register the I/O table
again.

FALS error

SYS FAIL FAL**

01 to 99
or 9F

FALS has been
executed by the
program. Check the FAL
number to determine
conditions that would
cause execution (Set by
user or by system).

Correct according to cause
indicated by FAL number. If FAL
number is 9F, check watchdog
timer and cycle time, which may
be to long. 9F will be output
when FALS(07) is executed and
the cycle time is between 120
and 130 ms.

ErrorM essages Section 8-4

260

A number of other error messages are detailed within this manual. Errors in pro-
gram input and debugging can be examined in Section 4 Writing and Inputting
the Program and errors in cassette tape operation are detailed in 7-2 Program
Backup and Restore Operations.

8-5 Error Flags
The following table lists the flags and other information provided in the SR and
AR areas that can be used in troubleshooting. Details are provided in 3-4 SR
Area and 3-5 AR Area.

SR Area
Address(es) Function

23600 to 23615 Node loop status for SYSMAC NET Link system

23700 to 23715 Completion/error code output area for SEND(90)/RECV(98) in
SYSMAC LINK/SYSMAC NET Link System

24700 to 25015 PC Link Unit Run and Error Flags

25100 to 25115 Remote I/O Error Flags

25200 SYSMAC LINK/SYSMAC NET Link Level 0 SEND(90)/RECV(98)
Error Flag

25203 SYSMAC LINK/SYSMAC NET Link Level 1 SEND(90)/RECV(98)
Error Flag

25206 Rack-mounting Host Link Unit Level 1 Error Flag

25208 CPU-mounting Host Link Unit Error Flag

25300 to 25307 FAL number output area.

25308 Low Battery Flag (ON for low battery in CPU or Memory Unit)

25309 Cycle Time Error Flag

25310 I/O Verification Error Flag

25311 Rack-mounting Host Link Unit Level 0 Error Flag

25312 Remote I/O Error Flag

25414 Group-2 High-density I/O Unit Error Flag

25415 Special I/O, Master, or Link Unit Error Flag

25503 Instruction Execution Error (ER) Flag

Other Error Messages

ErrorFlags Section 8-5

261

AR Area
Address(es) Function

0000 to 0009 Special I/O or PC Link Unit Error Flags

0010 SYSMAC LINK/SYSMAC NET Link Level 1 System
Error Flags

0011 SYSMAC LINK/SYSMAC NET Link Level 0 System
Error Flags

0012 Rack-mounting Host Link Unit Level 1 Error Flag

0013 Rack-mounting Host Link Unit Level 0 Error Flag

0014 Remote I/O Master Unit 1 Error Flag

0015 Remote I/O Master Unit 0 Error Flag

0200 to 0204 Error Flags for Slave Racks 0 to 4

0205 to 0214 Group-2 High-density I/O Unit Error Flags

(Indicate I/O number of problem Units. Bits AR 0205
to AR 0214 correspond to I/O numbers 0 to 9.)

0300 to 0315 Optical I/O Units (0 to 7) Error Flags

0400 to 0415 Optical I/O Units (8 to 15) Error Flags

0500 to 0515 Optical I/O Units (16 to 23) Error Flags

0600 to 0615 Optical I/O Units (24 to 31) Error Flags

0713 to 0715 Error History Bits

1114 Communications Controller Error Flag Level 0

1115 EEPROM Error Flag for operating level 0

1514 Communications Controller Error Flag Level 1

1515 EEPROM Error Flag for operating level 1

2404 CPU Low Battery Flag

(If SR 25308 is ON and this flag is OFF, the Memory
Unit battery is low.)

2500 to 2515 FALS-generating address or cycle time error (BCD)

ErrorFlags Section 8-5

263

Appendix A
Standard Models

C200H Racks
Name Specifications Model number

Backplane (same for all Racks) 10 slots C200H-BC101-V2p ()

8 slots C200H-BC081-V2

5 slots C200H-BC051-V2

3 slots C200H-BC031-V2

CPU Rack CPUs w/built-in power supply (100 to 120/200 to 240 VAC);
Output current: 4.6 A (3.2 A to I/O Units)

C200H-CPU21-E

w/built-in power supply (24 VDC);
Output current: 3 A (1.6 A to I/O Units)

C200H-CPU23-E

w/built-in power supply (100 to 120/200 to 240 VAC);
Output current: 4.6 A (3.0 A to I/O Units);

Can support SYSMAC NET Link/SYSMAC LINK Units.

C200H-CPU31-E

Memory Units CMOS-RAM Units; battery back-up UM: 3K words;
DM: 1K words

C200H-MR431

UM: 7K words;
DM: 1K words

C200H-MR831

CMOS-RAM Units; battery back-up;
with clock

UM: 3K words;
DM: 1K words

C200H-MR433

UM: 7K words;
DM: 1K words

C200H-MR833

CMOS-RAM Units; capacitor back-up UM: 3K words;
DM: 1K words

C200H-MR432

UM: 7K words;
DM: 1K words

C200H-MR832

EPROM Unit
(EPROM ordered separately)

UM: 7K words;
DM: 1K words

C200H-MP831

EEPROM Units UM: 3K words;
DM: 1K words

C200H-ME431

UM: 7K words;
DM: 1K words

C200H-ME831

EEPROM Units with clock UM: 3K words;
DM: 1K words

C200H-ME432

UM: 7K words;
DM: 1K words

C200H-ME832

EPROM 27128; 150 ns; write voltage: 12.5 V ROM-ID-B

Expansion
I/O R k

I/O Power Supply
U i

100 to 120/200 to 240 VAC (selectable) C200H-PS221p
I/O Racks

/ pp y
Units 24 VDC C200H-PS211

I/O Connecting
C bl (l

30 cm C200H-CN311/ g
Cables (max. total
length: 12 m)

70 cm C200H-CN711
length: 12 m)

2 m C200H-CN221

5 m C200H-CN521

10 m C200H-CN131

StandardM odels Appendix A

264

C200H Standard I/O Units
Name Specifications Model number

Input Units AC Input Units 8 pts 100 to 120 VAC C200H-IA121

16 pts 100 to 120 VAC C200H-IA122

8 pts 200 to 240 VAC C200H-IA221

16 pts 200 to 240 VAC C200H-IA222

DC Input Units 8 pts No-voltage contact; NPN C200H-ID001

8 pts No-voltage contact; PNP C200H-ID002

8 pts 12 to 24 VDC C200H-ID211

16 pts 24 VDC C200H-ID212

AC/DC Input Units 8 pts 12 to 24 VAC/DC C200H-IM211

16 pts 24 VAC/DC C200H-IM212

Output
U i

Relay Output Units 8 pts 2 A, 250 VAC/24 VDC (For resistive loads) C200H-OC221p
Units 12 pts 2 A, 250 VAC/24 VDC (For resistive loads) C200H-OC222

16 pts 2 A, 250 VAC/24 VAC (For resistive loads) C200H-OC2251, 2

5 pts 2 A, 250 VAC/24 VDC (For resistive loads)
Independent commons

C200H-OC223

8 pts 2 A, 250 VAC/24 VDC (For resistive loads)
Independent commons

C200H-OC224

Triac Output Units 8 pts 1 A, 120 VAC C200H-OA121-E

8 pts 1 A, 250 VAC C200H-OA221

12 pts 0.3 A, 250 VAC C200H-OA222

Transistor Output
U i

8 pts 1 A, 12 to 48 VDC C200H-OD411p
Units 12 pts 0.3 A, 24 VDC C200H-OD211

16 pts 0.3 A, 24 VDC C200H-OD2121

8 pts 2.1 A, 24 VDC C200H-OD213

8 pts 0.8 A, 24 VDC; source type (PNP); with load
short protection

C200H-OD214

8 pts 0.3 A, 5 to 24 VDC; source type (PNP) C200H-OD216

12 pts 0.3 A, 5 to 24 VDC; source type (PNP) C200H-OD217

Analog Timer Unit 4 timer
pts

0.1 to 1 s, 1 to 10 s, 10 to 60 s, or 1 min to 10
min (switchable)

C200H-TM001

Variable Resistor
Connector
(Related Product)

Connector with lead wire (2 m) for 1 external
resistor

C4K-CN223

B7A Interface Units 15 or
16 input
pts

Connects to B7A Link Terminals. C200H-B7AI1

16 out-
put pts

C200H-B7AO1

Note 1. C200H-OD212 Transistor Output Unit and C200H-OC225 Contact Output Unit must be mounted to ei-
ther a C200H-BC031-V2, C200H-BC051-V2, C200H-BC081-V2, or C200H-BC101-V2 Backplane.

2. The C200H-OC225 might overheat if more than 8 outputs are turned ON simultaneously.

Appendix AStandardM odels

265

C200H Group-2 High-density I/O Units
Name Specifications Model number

DC Input Units 32 pts. 24 VDC C200H-ID216

64 pts. 24 VDC C200H-ID217

Transistor Output
U i

32 pts. 16 mA 4.5 VDC to 100 mA 26.4 VDC C200H-OD218p
Units 64 pts. 16 mA 4.5 VDC to 100 mA 26.4 VDC C200H-OD219

C200H Special I/O Units
All of the following are classified as Special I/O Units except for the ASCII Unit, which is an Intelligent I/O Unit.

Name Specifications Model number

High-
density I/O

DC Input
Units

32 pts 5 VDC (TTL inputs); with high-speed input function C200H-ID501
density I/O
Units

Units
32 pts 24 VDC; with high-speed inputs C200H-ID215

Transistor
O U i

32 pts 0.1 A, 24 VDC (usable as 128-point dynamic output unit) C200H-OD215
Output Units 32 pts 35 mA, 5 VDC (TTL outputs) (usable as 128-point dy-

namic output unit)
C200H-OD501

DC Input/
Transistor
Output Units

16 input/
16 output pts

12-VDC inputs; with high-speed input function
0.1 A , 12-VDC outputs (usable as 128-point dynamic in-
put unit)

C200H-MD115

p

16 input/
16 output pts

24-VDC inputs; with high-speed input function
0.1 A , 24-VDC outputs (usable as 128-point dynamic in-
put unit)

C200H-MD215

16 input/
16 output pts

5 VDC (TTL inputs); with high speed input function 35
mA, 5 VDC Output (TTL outputs) (usable as 128-point
dynamic input unit)

C200H-MD501

Analog I/O
U i

Analog Input
U i

4 to 20 mA, 1 to 5/0 to 10 V (switchable); 4 inputs C200H-AD001g /
Units

g p
Units 4 to 20 mA, 1 to 5/0 to 10/--10 to 10 V; 8 inputs C200H-AD002

Analog
Output Unit

4 to 20 mA, 1 to 5/0 to 10 V (switchable); 2 outputs C200H-DA001

Temperature Sensor Units Thermocouple (K(CA) or J(IC)) (switchable); 4 inputs C200H-TS001

Thermocouple (K(CA) or L(Fe-CuNi)) (switchable); 4 inputs C200H-TS002

Platinum resistance thermometer (JPt) (switchable), DIN standards;
4 inputs

C200H-TS101

Platinum resistance thermometer (Pt) (switchable); 4 inputs C200H-TS102

Temperature Control Units Thermocou-
l

Transistor output C200H-TC001p
ple Voltage output C200H-TC002

Current output C200H-TC003

Platinum re-
i t

Transistor output C200H-TC101
sistance
thermome-

Voltage output C200H-TC102
thermome-
ter Current output C200H-TC103

Heat/Cool Temperature
C l U i

Thermocou-
l

Transistor output C200H-TV001/ p
Control Units ple Voltage output C200H-TV002

Current output C200H-TV003

Platinum re-
i t

Transistor output C200H-TV101
sistance
thermome-

Voltage output C200H-TV102
thermome-
ter Current output C200H-TV103

PID Control Units Transistor output;
4 to 20 mA/1 to 5 V/0 to 5V/0 to 10 V inputs (selectable)

C200H-PID01

Voltage output;
4 to 20 mA/1 to 5 V/0 to 5V/0 to 10 V inputs (selectable)

C200H-PID02

Current output;
4 to 20 mA/1 to 5 V/0 to 5V/0 to 10 V inputs (selectable)

C200H-PID03

StandardM odels Appendix A

266

Name Model numberSpecifications

Position Control Units 1 axis Pulse output; speeds: 1 to 100,000 pps C200H-NC111

1 axis Pulse output; directly connectable to servomotor driver;
compatible with line driver; speeds: 1 to 250,000 pps

C200H-NC112

2 axis Pulse output; 1 to 250,000 pps, 53 pts per axis C200H-NC211

Cam Positioner Unit Detects angles of rotation by means of a resolver and provides ON and
OFF outputs at specified angles. A maximum of 48 cam outputs (16 ex-
ternal outputs and 32 internal outputs) maximum are available.

C200H-CP114

High-speed Counter Units 1 axis Pulse input; counting speed: 50 kcps;
5 VDC/12 VDC/24 VDC

C200H-CT001-V1

1 axis Pulse input; counting speed: 75 kcps;
RS-422 line driver

C200H-CT002

ASCII Unit 24K-byte RAM and 24K-byte EEPROM are built-in. C200H-ASC02

ID Sensor Units Local application, electromagnetic coupling C200H-IDS01-V1

Remote application, microwave transmissions C200H-IDS21

Read/Write
H d

Electromagnetic type V600-H series/
Head Microwave type V620-H series

Data Carrier
()

SRAM type for V600-H series. V600-DjjRjj
(see note) EEPROM type for V600-H series. V600-DjjPjj

Voice Unit 60 messages max.; message length: 32, 48, or 64 s (switchable) C200H-OV001

Connecting
Cable

RS-232C C200H-CN224

Fuzzy Logic Unit Up to 8 inputs and 4 outputs. (I/O to and from specified data area words) C200H-FZ001

Note For Read/Write Head and Data Carrier combinations, refer to the V600 FA ID System R/W Heads and EE-
PROM Data Carriers Operation Manual and Supplement or V600 FA ID System R/W Heads and SRAM
Data Carriers Operation Manual and Supplement.

C200H Link Units
Name Specifications Model number

Host Link Units Rack-mounting C200H only APF/PCF C200H-LK101-PV1

RS-422 C200H-LK202-V1

RS-232C C200H-LK201-V1

CPU-mounting C1000H/C2000H PCF 3G2A6-LK101-EV1

C500 APF/PCF 3G2A6-LK101-PEV1

C200H RS-232C 3G2A6-LK201-EV1

C120 RS-422 3G2A6-LK202-EV1

PC Link Unit Single level: 32 Units
Multilevel: 16 Units

RS-485 C200H-LK401

Remote I/O
M U i

Up to two per PC; connectable to up to 5
Sl PC l

APF/PCF C200H-RM001-PV1/
Master Units

p p ; p
Slaves per PC total Wired C200H-RM201

Remote I/O Slave Units 100 to 120/200 to 240 VAC (switchable) APF/PCF C200H-RT001-P

24 VDC C200H-RT002-P

100 to 120/200 to 240 VAC (switchable) Wired C200H-RT201

24 VDC C200H-RT202

Optional Products
Name Specifications Model number

I/O Unit Cover Cover for 10-pin terminal block C200H-COV11

Terminal Block Covers Short protection for 10-pin terminal block (package of 10 cov-
ers); 8 pts

C200H-COV02

Appendix AStandardM odels

267

Name Model numberSpecifications

Short protection for 19-pin terminal block (package of 10 cov-
ers); 12 pts

C200H-COV03

Connector Cover Protective cover for unused I/O Connecting Cable connectors C500-COV02

Space Unit Used for vacant slots C200H-SP001

Battery Set For: C200H-MR_31/MR_33 RAM Memory Units
C200H-ME_32 EEPROM Memory Unit
C200H-CPU31-E CPU

C200H-BAT09

Relay 24 VDC G6B-1174P-FD-US DC24

Backplane Insulation Plates For 10-slot Backplane C200H-ATTA1

For 8-slot Backplane C200H-ATT81

For 5-slot Backplane C200H-ATT51

For 3-slot Backplane C200H-ATT31

I/O Brackets For 5-slot Backplane C200H-ATT53

For 8-slot Backplane C200H-ATT83

For 3-slot Backplane C200H-ATT33

Memory Unit Lock Fitting To secure Memory Unit to CPU C200H-ATT03

External Connectors Solder terminal; 40 pin with connector cover Straight type C500-CE401; p

Right-angle type C500-CE404
Solderless terminal (crimp-type); 40 pin with Straight type C500-CE402(p yp); p
connector cover Right-angle type C500-CE405

Pressure welded terminal; 40 pin C500-CE403

Solder terminal; 24 pin with connector cover C500-CE241

Solderless terminal; 24 pin with connector cover (crimp-type) C500-CE242

Pressure welded terminal; 24 pin C500-CE243

Note 1. When ordering, specify the model name (any component of which is not sold separately).
2. Order the pressfit tool from the manufacturer.

Optical Units
Name Specifications Model no.

Optical I/O
U i

No-voltage Input Units 8 pts. 100 to 120 VAC
l

APF/PCF 3G5A2-ID001-PEp /
Units power supply PCF 3G5A2-ID001-E

AC/DC Input Units 12 to 24 VAC/DC 8 pts. APF/PCF 3G5A2-IM211-PE

PCF 3G5A2-IM211-E

AC Input Units 100 to 120 VAC 8 pts. APF/PCF 3G5A2-IA121-PE

PCF 3G5A2-IA121-E

200 to 240 VAC 8 pts. 100 to 120/200 to
VAC

APF/PCF 3G5A2-IA221-PE/
240 VAC power
supply

PCF 3G5A2-IA221-E

Relay Output Units 2A, 250 VAC/24 VDC
(/ l k)

supply
APF/PCF 3G5A2-OC221-PE, /

(w/relay socket) 8 pts. PCF 3G5A2-OC221-E

Triac Output Units 1A, 100 to 120/200 to
240 VAC (w/built-in

APF/PCF 3G5A2-OA222-PE
240 VAC (w/built-in
surge killer) 8 pts. PCF 3G5A2-OA222-E

Transistor Output Unit 0.3 A, 12 to 48 VDC
8 pts.

APF/PCF 3G5A2-OD411-PE

Repeater Units Connected between 32nd and 33rd Units
when connecting more than 33 Units in a

APF/PCF 3G5A2-RPT01-PE
when connecting more than 33 Units in a
Remote Subsystem; power supply: 85 to
250 VAC.

PCF 3G5A2-RPT01-E

StandardM odels Appendix A

268

Link Adapters
Name Specifications Model no.

Link Adapters 3 RS-422 connectors 3G2A9-AL001

3 optical connectors (APF/PCF) 3G2A9-AL002-PE

3 optical connectors (PCF) 3G2A9-AL002-E

1 connector for RS-232C; 2 for RS-422 3G2A9-AL003

1 connector each for APF/PCF, RS-422, and RS-232C 3G2A9-AL004-PE

1 connector each for PCF, RS-422, and RS-232C 3G2A9-AL004-E

1 connector each for APF/PCF and APF 3G2A9-AL005-PE

1 connector each for PCF and AGF 3G2A9-AL005-E

1 connector for APF/PCF; 2 for AGF 3G2A9-AL006-PE

1 connector for PCF; 2 for AGF 3G2A9-AL006-E

O/E converter; 1 connector for RS-485, 1 connector each for APF/PCF B500-AL007-PE

Used for on-line removal of FIT or SYSMAC NET Link Units from the
SYSMAC NET Link System, SYSMAC NET Optical Link Adapter 3
connectors for APF/PCF.

B700-AL001

DIN Products
Name Specifications Model number

DIN Track Mounting Bracket 1 set (2 included) C200H-DIN01

DIN Track Length: 50 cm; height: 7.3 cm PFP-50N

Length: 1 m; height: 7.3 cm PFP-100N

Length: 1 m; height: 16 mm PFP-100N2

End Plate --- PFP-M

Spacer --- PFP-S

Optical Fiber Cable
PlasticOptical FiberCable (APF) APF stands for “All-Plastic Fiber.” This cable
can be used to connect only Units having the suffix “-P” in their model number.
The maximum length is 20 m. The 3G5A2-PF002 cable comes without connec-
tors and must be assembled by the user.

Product Description Model no.

Plastic Optical Fiber Cable Cable only (optical connectors not provided)
Order in units of 5 m for cable less than 100 m, or in units of
200 m or 500 m.

3G5A2-PF002

Optical Connector A 2 pcs (brown),for plastic Optical fiber 10 m long max. 3G5A2-CO001

Optical Connector B 2 pcs (black) for plastic Optical fiber 8 to 20 m long 3G5A2-CO002

Plastic Optical Fiber Cable 1 m, w/optical connector A provided at both ends 3G5A2-PF101

Optical Fiber Processing Kit Accessory: 125-mm nipper (Muromoto Tekko’s 550M) for APF 3G2A9-TL101

Appendix AStandardM odels

269

Plastic-Clad Optical Fiber Cable (PCF) PCF stands for “Plastic-Clad Fiber.”
This cable can be used to connect any Units. The maximum length for Units hav-
ing the suffix “--P” in their model number is 200 m. The maximum length for Units
without the suffix “--P” in their model number is 800 m.

Product Description Model no.

Optical Fiber Cables
(f i d)

0.1 m, w/connector Ambient temperature: --10% to 70%C 3G5A2-OF011p
(for indoors) 1 m, w/connector 3G5A2-OF101

2 m, w/connector 3G5A2-OF201

3 m, w/connector 3G5A2-OF301

5 m, w/connector 3G5A2-OF501

10 m, w/connector 3G5A2-OF111

20 m, w/connector 3G5A2-OF211

30 m, w/connector 3G5A2-OF311

40 m, w/connector 3G5A2-OF411

50 m, w/connector 3G5A2-OF511

Optical Fiber Cable
(f d)

1 to 500 m (Order in Units of 10 m) Ambient temperature: --10% to 70%C 3G5A2-OF002p
(for outdoors) 501 to 800 m (Order in Units of 10 m) Ambient temperature: 0% to 55%C

(Must not be subjected to direct
sunlight)

Crystal Optical Fiber Cable (AGF) AGF stands for “All-Glass Fiber.” Crystal
optical fiber cable is not available from OMRON.

CableLength Theconnectors may bedifficult toattach to the cables. Therefore,
always leave a little extra length when cutting the cable. The lengths given for
pre-assembled cables are as shown below.

Fiber length (m)

Peripheral Devices
Name Specifications Model number

Hand-held Programming
Console

Vertical, w/backlight
Connecting cable required; sold separately

C200H-PRO27-E

Data Access Console Vertical, w/backlight
Connecting cable required; sold separately

C200H-DAC01-E

Programming and Data
Access Console Connecting

For handheld console, 2 m C200H-CN222
Access Console Connecting
Cables For handheld console, 4 m C200H-CN422

Panel Mounting Bracket Mounts Hand-held Programming Console or Data Access Con-
sole to a panel.

C200H-ATT01

Programming Console
Bases

Used to mount 16- or 32-point I/O Units to
rightmost two slots when mounting periph-

29-mm height C200H-BP001
Bases rightmost two slots when mounting periph-

erals directly to CPU. 49-mm height C200H-BP002

Data Setting Console Used for data input and process value display for the
C200H-TCjjj/C200H-TVjjj/C200H-PIDjj.

C200H-DSC01

Data Setting Console Con-
ti C bl

For C200H-DSC01 2 m C200H-CN225g
necting Cables 4 m C200H-CN425

PROM Writer Applicable to all C-series PCs.

Write voltages: 12.5 or 21 V

C500-PRW06

StandardM odels Appendix A

270

Name Model numberSpecifications

Floppy Disk Interface Unit Applicable to all C-series PCs. 3G2C5-FDI03-E

Printer Interface Unit Applicable to all C-series PCs. 3G2A5-PRT01-E

Memory Pack Applicable to C200H, C1000H, or C2000H. C2000-MP103-EV3

Peripheral Interface Unit Connects the C200H CPU to a GPC or FIT.

Connecting Cable sold separately.

C200H-IP006

Graphic Programming
C l

100- to 120-VAC power supply (Comments supported.) 3G2C5-GPC03-Ep g g
Consoles 200- to 240-VAC power supply (Comments supported.) 3G2C5-GPC04-E

Memory Pack Applicable to C200H, C1000H, or C2000H. 3G2C5-MP304-EV3

CRT Interface Unit For connection between GPC and CRT C500-GDI01

Ladder Support Software (LSS)
Product Description Model no.

Ladder Support Software 5.25”, 2D for IBM PC/AT compatible C500-SF711-EV3

3.5”, 2DD for IBM PC/AT compatible C500-SF312-EV3

SYSMAC LINK Unit/SYSMAC NET Link Unit
Name Specifications Model number

SYSMAC LINK Unit Wired via coaxial cable.
Must be mounted to rightmost 2 slots on Rack with
C200H-CPU31-E

C200H-SLK23

Wired via optical fiber cable.
Bus Connection Unit required separately. May be used with
APS Power Supply Unit.

C200H-SLK13

Terminator One required for each node at ends of System C1000H-TER01

Attachment Stirrup Provided with SYSMAC LINK Unit C200H-TL001

F Adapter --- C1000H-CE001

F Adapter Cover --- C1000H-COV01

Communications
C bl

Coaxial cables Manufactured by Hitachi ECXF5C-2V
Cable Manufactured by Fujigura 5C-2V

Auxiliary Power Sup-
ply Unit

Supplies backup power to either one or two SYSMAC LINK
Units. One C200H-CN111 Power Connecting Cable included.

C200H-APS03

SYSMAC NET Link Unit Must be mounted to rightmost 2 slots on Rack with C200H-
CPU31-E

C200H-SNT32

Power Supply
Ad

Required when supplying power from
C l P S l

For 1 Unit C200H-APS01pp y
Adapter

q pp y g p
Central Power Supply For 2 Units C200H-APS02

Power Cable Connects Power Supply Adapter and SYS-
MAC NET Li k U i

For 1 Unit C200H-CN111pp y p
MAC NET Link Unit For 2 Units C200H-CN211

Bus Connection Unit Connects SYSMAC LINK Unit or SYSMAC
NET Li k U i CPU

For 1 Unit C200H-CE001
NET Link Unit to CPU For 2 Units C200H-CE002

271

Appendix B
Programming Instructions

This appendix provides tables listing the programming instructions used with C200H PCs. The first table summa-
rizes all instructions and gives page references where more detailed information can be found in the body of the
manual. The second table gives the execution times for the instructions for both ON and OFF execution condi-
tions. The third part is divided into two tables and summarizes the instructions, giving the ladder diagram symbol, a
brief description, and the applicable data areas. In all tables, the entries are listed alphanumerically. Instructions
without function codes are given first in alphabetical order, according to the mnemonic. These are followed by the
instructions with function codes which are listed numerically, according to the function code.
A PC instruction is entered either using the appropriate Programming Console key(s) (e.g., LD, AND, OR, NOT),
or by using function codes. To input an instruction using its function code, press FUN, the function code, and then
WRITE.

Function Code Name Mnemonic Page

---- AND AND 102

---- AND LOAD AND LD 103

---- AND NOT AND NOT 102

---- COUNTER CNT 116

---- LOAD LD 102

---- LOAD NOT LD NOT 102

---- OR OR 102

---- OR LOAD OR LD 103

---- OR NOT OR NOT 102

---- OUTPUT OUT 104

---- OUTPUT NOT OUT NOT 104

---- TIMER TIM 112

00 NO OPERATION NOP 111

01 END END 111

02 INTERLOCK IL 108

03 INTERLOCK CLEAR ILC 108

04 JUMP JMP 110

05 JUMP END JME 110

06 FAILURE ALARM FAL 197

07 SEVERE FAILURE ALARM FALS 197

08 STEP DEFINE STEP 188

09 STEP START SNXT 188

10 SHIFT REGISTER SFT 121

11 KEEP KEEP 106

12 REVERSIBLE COUNTER CNTR 119

13 DIFFERENTIATE UP DIFU 104

14 DIFFERENTIATE DOWN DIFD 104

15 HIGH-SPEED TIMER TIMH 116

16 WORD SHIFT WSFT 128

17 REVERSIBLE WORD SHIFT RWS 128

18 CYCLE TIME SCAN 198

19 MULTI-WORD COMPARE MCMP 138

20 COMPARE CMP 139

21 MOVE MOV 130

22 MOVE NOT MVN 130

Program m ingInstructions Appendix B

272

Function Code PageMnemonicName

23 BCD-TO-BINARY BIN 146

24 BINARY-TO-BCD BCD 147

25 ARITHMETIC SHIFT LEFT ASL 125

26 ARITHMETIC SHIFT RIGHT ASR 125

27 ROTATE LEFT ROL 125

28 ROTATE RIGHT ROR 126

29 COMPLEMENT COM 179

30 BCD ADD ADD 160

31 BCD SUBTRACT SUB 162

32 BCD MULTIPLY MUL 165

33 BCD DIVIDE DIV 167

34 AND WORD ANDW 180

35 OR WORD ORW 180

36 EXCLUSIVE OR XORW 181

37 EXCLUSIVE NOR XNRW 182

38 INCREMENT INC 159

39 DECREMENT DEC 159

40 SET CARRY STC 159

41 CLEAR CARRY CLC 159

46 DISPLAY MESSAGE MSG 198

47 LONG MESSAGE LMSG 200

48 TERMINAL MODE TERM 200

49 SET SYSTEM SYS 201

50 BINARY ADD ADB 174

51 BINARY SUBTRACT SBB 176

52 BINARY MULTIPLY MLB 178

53 BINARY DIVIDE DVB 179

54 DOUBLE BCD ADD ADDL 161

55 DOUBLE BCD SUBTRACT SUBL 164

56 DOUBLE BCD MULTIPLY MULL 166

57 DOUBLE BCD DIVIDE DIVL 168

58 DOUBLE BCD-TO-DOUBLE BINARY BINL 146

59 DOUBLE BINARY-TO-DOUBLE BCD BCDL 148

60 DOUBLE COMPARE CMPL 141

61 GROUP-2 HIGH-DENSITY I/O REFRESH MPRF 206

63 COLUMN-TO-WORD CTW 131

64 WORD-TO-COLUMN WTC 132

65 HOURS-TO-SECONDS HTS 148

66 SECONDS-TO-HOURS STH 149

67 BIT COUNTER BCNT 202

68 BLOCK COMPARE BCMP 143

69 VALUE CALCULATE VCAL 202

70 BLOCK TRANSFER XFER 134

71 BLOCK SET BSET 133

72 SQUARE ROOT ROOT 172

73 DATA EXCHANGE XCHG 135

74 ONE DIGIT SHIFT LEFT SLD 126

75 ONE DIGIT SHIFT RIGHT SRD 127

76 4-TO-16 DECODER MLPX 150

Appendix BProgram m ingInstructions

273

Function Code PageMnemonicName

77 16-TO-4 ENCODER DMPX 152

78 7-SEGMENT DECODER SDEC 154

79 FLOATING POINT DIVIDE FDIV 169

80 SINGLE WORD DISTRIBUTE DIST 135

81 DATA COLLECT COLL 136

82 MOVE BIT MOVB 136

83 MOVE DIGIT MOVD 137

84 REVERSIBLE SHIFT REGISTER SFTR 123

85 TABLE COMPARE TCMP 144

86 ASCII CONVERT ASC 157

89 INTERRUPT CONTROL INT 185

90 NETWORK SEND SEND 207

91 SUBROUTINE ENTER SBS 183

92 SUBROUTINE DEFINE SBN 183

93 RETURN RET 183

94 WATCHDOG TIMER REFRESH WDT 205

97 I/O REFRESH IORF 205

98 NETWORK RECEIVE RECV 208

Program m ingInstructions Appendix B

274

Instruction Execution Times

The following table lists the execution times for all instructions that are available for the C200H. The maximum and
minimum execution times and the conditions which cause them are given where relevant. When “word” is referred
to in the Conditions column, it implies the content of any word except for indirectly addressed DM words. Indirectly
addressed DM words, which create longer execution times when used, are indicated by “*DM.”

Execution times for most instructions depend on whether they are executed with an ON or an OFF execution con-
dition. Exceptions are the ladder diagram instructions OUT and OUT NOT, which require thesame timeregardless
of the execution condition. The OFF execution time for an instruction can also vary depending on the circum-
stances, i.e., whether it is in an interlocked program section and the execution condition for IL is OFF, whether it is
between JMP(04) 00 and JME(05) 00 and the execution condition for JMP(04) 00 is OFF, or whether it is reset by
an OFF execution condition. “R,” “IL,” and “JMP” are used to indicate these three times.

All execution times are given in microseconds unless otherwise noted.

Instruction Conditions ON execution time (.s) OFF execution time (.s)

LD ------ 0.75 ------

LD NOT ------ 0.75 ------

AND ------ 0.75 ------

AND NOT ------ 0.75 ------

OR ------ 0.75 ------

OR NOT ------ 0.75 ------

AND LD ------ 0.75 ------

OR LD ------ 0.75 ------

OUT ------ 1.13 ------

OUT NOT ------ 1.13 ------

TIM Constant for SV 2.25 R: 2.25

IL: 2.25

JMP: 2.25

*DM for SV R: 160

IL: 2.25

JMP: 2.25

CNT Constant for SV 2.25 R: 2.25

IL: 2.25

JMP: 2.25

*DM for SV R: 160

IL: 2.25

JMP: 2.25

NOP(00) ------ 0.75 ------

END(01) ------ 80 ------

IL(02) ------ 59 35

ILC(03) ------ 44 35

JMP(04) ------ 69 35

JME(05) ------ 47 35

FAL(06) 01 to 99 ------ 236 2.25

FAL(06) 00 ------ 182 2.25

FALS(07) ------ 4.28 ms 2.25

STEP(08) ------ 95 2.25

SNXT(09) ------ 34 2.25

Appendix BProgram m ingInstructions

275

Instruction OFF execution time (.s)ON execution time (.s)Conditions

SFT(10) With 1-word shift register 181 R: 191

IL: 30

JMP: 30

With 250-word shift register 1.44 ms R: 1.81 ms

IL: 30

JMP: 30

KEEP(11) ------ 1.13 ------

CNTR(12) Constant for SV 111 R: 85

IL: 49

*DM for SV 205 JMP: 49

DIFU(13) ------ 93 Normal: 93

IL: 93

JMP: 84

DIFD(14) ------ 92 Normal: 92

IL: 92

JMP: 84

TIMH(15) Interrupt Constant for SV 120 R: 199

Normal cycle 135 IL: 199

Interrupt *DM for SV 120 JMP: 73

Normal cycle 135 R: 291

IL: 291

JMP: 73

WSFT(16) When shifting 1 word 170 3

When shifting 1,000 words using *DM 8.6 ms

RWS(17) When resetting 1 word 388 3.75

When shifting 999 words using *DM 30.3 ms

SCAN(18) Constant for SV 311 3.75

*DM for SV 412

MCMP(19) Comparing 2 words, result word 636 3.75

Comparing 2 *DM, result *DM 890

CMP(20) When comparing a constant to a word 124 3

When comparing two *DM 296

MOV(21) When transferring a constant to a word 88 3

When transferring *DM to *DM 259

MVN(22) When transferring a constant to a word 91 3

When transferring *DM to *DM 261

BIN (23) When converting a word to a word 174 3

When converting *DM to *DM 338

BCD(24) When converting a word to a word 179 3

When converting *DM to *DM 337

ASL(25) When shifting a word 72 2.25

When shifting *DM 158

ASR(26) When shifting a word 72 2.25

When shifting *DM 158

ROL(27) When rotating a word 77 2.25

When rotating *DM 162

ROR(28) When rotating a word 77 2.25

When rotating *DM 162

Program m ingInstructions Appendix B

276

Instruction OFF execution time (.s)ON execution time (.s)Conditions

COM(29) When inverting a word 67 2.25

When inverting *DM 152

ADD(30) Constant + word bword 153 3.75

*DM + *DM b *DM 415

SUB(31) Constant + word bword 161 3.75

*DM -- *DM b *DM 422

MUL(32) Constant x word bword 480 3.75

*DM x *DM bword 742

DIV(33) Word (constant bword 724 3.75

*DM (*DM b *DM 984

ANDW(34) Constant AND word bword 122 3.75

*DM AND *DM b *DM 371

ORW(35) Constant OR word bword 122 3.75

*DM OR *DM b *DM 371

XORW(36) Constant XOR word bword 122 3.75

*DM XOR *DM b *DM 371

XNRW(37) Constant XNOR word bword 124 3.75

*DM XNOR *DM b *DM 373

INC(38) When incrementing a word 82 2.25

When incrementing *DM 167

DEC(39) When decrementing a word 82 2.25

When decrementing *DM 167

STC(40) ------ 27 1.5

CLC(41) ------ 27 1.5

MSG(46) ------ 98 2.25

LMSG(47) Constant for SV 290 3.75

*DM for SV 367

TERM(48) ------ 161 3.75

SYS(49) ------ 2 3.75

ADB(50) Constant + word bword 144 3.75

*DM + *DM b *DM 393

SBB(51) Constant -- word bword 147 3.75

*DM -- *DM b *DM 396

MLB(52) Constant x word bword 205 3.75

*DM x *DM b *DM 452

DVB(53) Word (constant bword 476 3.75

*DM (*DM b *DM 704

ADDL(54) Word + word bword 243 3.75

*DM + *DM b *DM 491

SUBL(55) Word -- word bword 255 3.75

*DM -- *DM b *DM 504

MULL(56) Word x word bword 1.14 ms 3.75

*DM x *DM b *DM 1.39 ms

DIVL(57) Word (word bword 3.25 ms 3.75

*DM (*DM b *DM 3.39 ms

BINL(58) When converting words to words 350 3

When converting *DM to *DM 511

Appendix BProgram m ingInstructions

277

Instruction OFF execution time (.s)ON execution time (.s)Conditions

BCDL(59) When converting words to words 588 3

When converting *DM to *DM 750

CMPL(60) When comparing words to words 380 3.75

When comparing *DM to *DM 543

MPRF(61) When refreshing one 32-pt Output Unit 700 3.75

When refreshing ten 32-pt Input Units 3.60 ms

CTW(63) When transferring from words to a word 670 3.75

When transferring *DM to *DM 923

WTC(64) When transferring from a word to words 807 3.75

When transferring *DM to *DM 1.07 ms

HTS(65) Word to word 859 3.75

*DM to *DM 1.00 ms

STH(66) Word to word 744 3.75

*DM to *DM 889

BCNT(67) When counting 1 word 502 3.75

When counting 1,000 words using *DM 100 ms

BCMP(68) Comparing constant to word-designated
table

674 3.75

Comparing *DM b *DM-designated table 926

VCAL69) Trigonometric functions. 488 3.75

Linear approximation with a 256 word
table

2.71 ms

XFER(70) When transferring 1 word 305 3.75

When transferring 1,000 words using *DM 16 ms

BSET(71) When setting a constant to 1 word 209 3.75

When setting *DM ms to 1,000 words
using *DM

4.28 ms

ROOT(72) When taking root of word and placing in a
word

631 3

When taking root of 99,999,999 in *DM
and placing in *DM

1.16 ms

XCHG(73) Between words 156 3

Between *DM 316

SLD(74) When shifting 1 word 193 3

When shifting 1,000 DM words using *DM 33 ms

SRD(75) When shifting 1 word 193 3

When shifting 1,000 DM words using *DM 33 ms

MLPX(76) When decoding word to word 203 3.75

When decoding *DM to *DM 568

DMPX(77) When encoding a word to a word 225 3.75

When encoding *DM to *DM 551

SDEC(78) When decoding a word to a word 235 3.75

When decoding *DM to *DM 571

FDIV(79) Word (word bword (equals 0) 632 3.75

Word (word bword (doesn’t equal 0) 1.77 ms

*DM (*DM b *DM 2.1 ms

DIST(80) Constant bword + (word) 246 3.75

*DM b (*DM + (*DM)) 481

COLL(81) (Word + (word)) bword 262 3.75

(*DM + (*DM)) b *DM 497

Program m ingInstructions Appendix B

278

Instruction OFF execution time (.s)ON execution time (.s)Conditions

MOVB (82) When transferring word to a word 158 3.75

When transferring *DM to *DM 357

MOVD(83) When transferring word to a word 195 3.75

When transferring *DM to *DM 399

SFTR(84) When shifting 1 word 284 3.75

When shifting 1,000 DM words using *DM 13.8 ms

TCMP(85) Comparing constant to words in a
designated table

542 3.75

Comparing *DM b *DM-designated table 830

ASC(86) Word bword 270 3.75

*DM b *DM 454

INT(89) When reading interrupt mask 265 3.75

When masking and clearing interrupt 265

SEND(90) 1-word transmit 563 3.75

1000-word transmit 752

SBS(91) ------ 158 2.25

SBN(92) ------ ------ ------

RET(93) ------ 198 1.5

WDT(94) ------ 35 2.25

IORF(97) 1-word refresh 450 3

30-word refresh 4 ms

RECV(98) 1-word refresh 559 3.75

1000-word refresh 764

Appendix BProgram m ingInstructions

279

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Basic Instructions
Name

Mnemonic
Symbol Function Operand Data Areas

AND
AND B

Logically ANDs the status of the desig-
nated bit with the current execution condi-
tion.

B:
IR
SR
HR
AR
LR
TC

AND LOAD
AND LD

Logically ANDs the resultant execution
conditions of the preceding logic blocks.

None

AND NOT
AND NOT

B

Logically ANDs the inverse of the desig-
nated bit with the current execution condi-
tion.

B:
IR
SR
HR
AR
LR
TC

COUNTER
CNT

CNT N

SV

CP

R

A decrementing counter. SV: 0 to 9999;
CP: count pulse; R: reset input. The TC bit
is entered as a constant.

N:
TC

SV:
IR
HR
AR
LR
DM
#

LOAD
LD

B

Defines the status of bit B as the execution
condition for subsequent operations in the
instruction line.

B:
IR
SR
HR
AR
LR
TC
TR

LOAD NOT
LD NOT

B

Defines the status of the inverse of bit B as
the execution condition for subsequent op-
erations in the instruction line.

B:
IR
SR
HR
AR
LR
TC

OR
OR

B

Logically ORs the status of the designated
bit with the current execution condition.

B:
IR
SR
HR
AR
LR
TC

Program m ingInstructions Appendix B

280

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

OR LOAD
OR LD

Logically ORs the resultant execution con-
ditions of the preceding logic blocks.

None

OR NOT
OR NOT

B

Logically ORs the inverse of the desig-
nated bit with the execution condition.

B:
IR
SR
HR
AR
LR
TC

OUTPUT
OUT

B

Turns ON B for an ON execution condition;
turns OFF B for an OFF execution condi-
tion.

B:
IR
SR
HR
AR
LR
TR

OUTPUT NOT
OUT NOT

B

Turns OFF B for an ON execution condi-
tion; turns ON B for an OFF execution con-
dition.

B:
IR
SR
HR
AR
LR

TIMER
TIM

TIM N

SV

ON-delay (decrementing) timer operation.
Set value: 000.0 to 999.9 s. The same TC
bit cannot be assigned to more than one
timer/counter. The TC bit is entered as a
constant.

N:
TC

SV:
IR
HR
AR
LR
DM
#

Appendix BProgram m ingInstructions

281

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Special Instructions
Name

Mnemonic
Symbol Function Operand Data Areas

NO OPERATION
NOP(00)

None

Nothing is executed and program opera-
tion moves to the next instruction.

None

END
END(01)

END(01)

Required at the end of each program. In-
structions located after END(01) will not be
executed.

None

INTERLOCK
IL(02)
INTERLOCK CLEAR
ILC(03)

IL(02)

ILC(03)

If an interlock condition is OFF, all outputs
and all timer PVs between the current
IL(02) and the next ILC(03) are turned OFF
or reset, respectively. Other instructions
are treated as NOP. Counter PVs are main-
tained. If the execution condition is ON, ex-
ecution continues normally.

None

JUMP
JMP(04)
JUMP END
JME(05)

NJMP(04)

JME(05) N

When the execution condition for the
JMP(04) instruction is ON, all instructions
between JMP(04) and the corresponding
JME(05) are to be ignored or treated as
NOP(00). For direct jumps, the corre-
sponding JMP(04) and JME(05) instruc-
tions have the same N value in the range
01 through 99. Direct jumps are usable
only once each per program (i.e., N is 01
through 99 can be used only once each)
and the instructions between the JUMP
and JUMP END instructions are ignored;
00 may be used as many times as neces-
sary, instructions between JMP 00 and the
next JME 00 are treated as NOP, thus in-
creasing cycle time, as compared with di-
rect jumps.

N:
00 to 99
(not applicable for
CjjP, CjjK, or
C120 PCs)

FAILURE ALARM
(@)FAL(06)

FAL(06) N

Assigns a failure alarm code to the given
execution condition.When N can be given
a value between 01 and 99 to indicate that
a non-fatal error (i.e., one that will not stop
the CPU) has occurred. This is indicated
by the PC outputting N (the FAL number)
to the FAL output area. To reset the FAL
area, N can be defined as 00. This will
cause all previously recorded FAL num-
bers in the FAL area to be deleted. FAL
data sent after a 00 will be recorded in the
normal way. The same code numbers can
be used for both FAL(06) and FALS(07).

N:
00 to 99

SEVERE FAILURE
ALARM
FALS(07) FALS(07) N

A fatal error is indicated by outputting N to
the FAL output area and the CPU is
stopped. The same FAL numbers are used
for both FAL(06) and FALS(07).

N:
01 to 99

STEP DEFINE
STEP(08)

STEP(08) B

When used with a control bit (B), defines
the start of a new step and resets the pre-
vious step. When used without B, it defines
the end of step execution.

B:
IR
HR
AR
LR

Program m ingInstructions Appendix B

282

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

STEP START
SNXT(09)

SNXT(09) B

Used with a control bit (B) to indicate the
end of the step, reset the step, and start the
next step which has been defined with the
same control bit.

B:
IR
HR
AR
LR

SHIFT REGISTER
SFT(10) I

P

R

SFT(10)
ST
E

Creates a bit shift register for data from the
starting word (St) through to the ending
word (E). I: input bit; P: shift pulse; R: reset
input. St must be less than or equal to E. St
and E must be in the same data area.

E ST
15 1500

IN
00

St/E:
IR
HR
AR
LR

KEEP
KEEP(11)

S

KEEP(11)

BR

Defines a bit (B) as a latch, controlled by
the set (S) and reset (R) inputs.

B:
IR
HR
AR
LR

REVERSIBLE
COUNTER
CNTR (12)

II

DI

R
N

SV

CNTR(12)

Increases or decreases the PV by one
whenever the increment input (II) or decre-
ment input (DI) signals, respectively, go
from OFF to ON. SV: 0 to 9999; R: reset in-
put. Each TC bit can be used for one timer/
counter only. The TC bit is entered as a
constant.

N:
TC

SV:
IR
SR
HR
AR
LR
DM
#

DIFFERENTIATE UP
DIFU(13)
DIFFERENTIATE
DOWN
DIFD(14)

DIFU(13)

DIFD(14)

B

B

DIFU(13) turns ON the designated bit (B)
for one cycle on reception of the leading
(rising) edge of the input signal; DIFD(14)
turns ON the bit for one cycle on reception
of the trailing (falling) edge.

B:
IR
HR
AR
LR

HIGH-SPEED TIMER
TIMH(15)

TIMH(15) N

SV

A high-speed, ON-delay (decrementing)
timer. SV: 00.02 to 99.99 s. Each TC bit can
be assigned to only one timer or counter.
The TC bit is entered as a constant.

N:
TC

SV:
IR
SR
HR
AR
LR
HR
#

WORD SHIFT
(@)WSFT(16)

WSFT(16)

E
St

The data in the words from the starting
word (St) through to the ending word (E),
is shifted left in word units, writing all zeros
into the starting word. St must be less than
or equal to E, and St and E must be in the
same data area.

St/E:
IR
HR
AR
LR
DM

Appendix BProgram m ingInstructions

283

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

REVERSIBLE WORD
SHIFT
(@)RWS(17) RWS(17)

E
St
C

Creates and controls a reversible
non-synchronous word shift register be-
tween St and E. Exchanges the content of
a word containing zero with the content of
either the preceding or following word, de-
pending on the shift direction. Bits 13, 14,
and 15 of control word C determine the
mode of operation of the register accord-
ing to the following: The shift direction is
determined by bit 13 (OFF shifts the
non-zero data to higher addressed words;
ON to lower addressed words). Bit 14 is
the register enable bit (ON for shift en-
abled). Bit 15 is the reset bit (if bit 15 is ON,
the register will be set to zero between St
and E when the instruction is executed
with bit 14 also ON). St and E must be in
the same data area.

C:
IR
SR
HR
AR
LR
TC
DM
#

St/E:
IR
SR
HR
AR
LR
TC
DM

CYCLE TIME
(@)SCAN(18) SCAN(18)

Mi

Sets the minimum cycle time, Mi, in tenths
of milliseconds. The possible setting
range is from 0 to 999.0 ms. If the actual
cycle time is less than the time set using
SCAN(18), the CPU will wait until the des-
ignated time has elapsed before starting
the next cycle.

Mi:
IR
SR
HR
AR
LR
TC
DM
#

---:
Not used.

MULTI-WORD
COMPARE
(@)MCMP(19) MCMP(19)

D
S2

S1

Compares the data within a block of 16
words of 4-digit hexadecimal data (S1 to
S1+15) with that in another block of 16
words (S2 to S2+15) on a word-by-word
basis. If the words are not in agreement,
the bit corresponding to unmatched words
turns ON in the result word, D. Bits corre-
sponding to words that are equal are
turned OFF.

S1/S2:
IR
SR
HR
AR
LR
TC
DM

D:
IR
SR
HR
AR
LR
TC
DM

COMPARE
(@)CMP(20)

CMP(20)
Cp1
Cp2

Compares the data in two 4-digit hexadeci-
mal words (Cp1 and Cp2) and outputs re-
sult to the GR, EQ, or LE Flags.

Cp1/Cp2:
IR
SR
HR
AR
LR
TC
DM
#

MOVE
(@)MOV(21)

MOV(21)
S
D

Transfers data from source word, (S) to
destination word (D).

S:
IR
SR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

Program m ingInstructions Appendix B

284

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

MOVE NOT
(@)MVN(22)

MVN(22)
S
D

Transfers the inverse of the data in the
source word (S) to destination word (D).

S:
IR
SR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

BCD-TO-BINARY
(@)BIN(23)

BIN(23)
S
R

Converts 4-digit, BCD data in source word
(S) into 16-bit binary data, and outputs
converted data to result word (R).

S

x100

x101

x102

x103

x160

x161

x162

x163

(BCD) (BIN)
R

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

BINARY-TO-BCD
(@)BCD(24)

BCD(24)
S
R

Converts binary data in source word (S)
into BCD, and outputs converted data to
result word (R).

x160

x161

x162

x163

x101

x102

x103

S R
(BIN) (BCD)

x100

S:
IR
SR
HR
AR
LR
DM

R:
IR
HR
AR
LR
DM

ARITHMETIC SHIFT
LEFT
(@)ASL(25)

ASL(25)
Wd

Each bit within a single word of data (Wd)
is shifted one bit to the left, with zero written
to bit 00 and bit 15 moving to CY.

Wd

15 00

CY 0

Wd:
IR
HR
AR
LR
DM

ARITHMETIC SHIFT
RIGHT
(@)ASR(26)

ASR(26)
Wd

Each bit within a single word of data (Wd)
is shifted one bit to the right, with zero writ-
ten to bit 15 and bit 00 moving to CY.

0 Wd CY
15 00

Wd:
IR
HR
AR
LR
DM

ROTATE LEFT
(@)ROL(27)

ROL(27)
Wd

Each bit within a single word of data (Wd)
is moved one bit to the left, with bit 15 mov-
ing to carry (CY), and CY moving to bit 00.

15 00
CYWd

Wd:
IR
HR
AR
LR
DM

Appendix BProgram m ingInstructions

285

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

ROTATE RIGHT
(@)ROR(28)

ROR(28)
Wd 15 00

CY Wd

Each bit within a single word of data (Wd)
is moved one bit to the right, with bit 00
moving to carry (CY), and CY moving to bit
15.

Wd:
IR
HR
AR
LR
DM

COMPLEMENT
(@)COM(29)

COM(29)
Wd

Inverts bit status of one word (Wd) of data,
changing 0s to 1s, and vice versa.

Wd Wd

Wd:
IR
HR
AR
LR
DM

BCD ADD
(@)ADD(30)

ADD(30)
Au
Ad
R

CY CY

Adds two 4-digit BCD values (Au and Ad)
and content of CY, and outputs the result to
the specified result word (R).

Au + Ad + R

Au/Ad:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

BCD SUBTRACT
(@)SUB(31)

SUB(31)
Mi
Su
R

Subtracts both the 4-digit BCD subtrahend
(Su) and content of CY, from the 4-digit
BCD minuend (Mi) and outputs the result
to the specified result word (R).

CYMi -- Su -- R CY

Mi/Su:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

BCD MULTIPLY
(@)MUL(32)

MUL(32)
Md
Mr
R

Multiplies the 4-digit BCD multiplicand
(Md) and 4-digit BCD multiplier (Mr), and
outputs the result to the specified result
words (R and R + 1). R and R + 1 must be
in the same data area.

Md x Mr R + 1 R

Md/Mr:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

BCD DIVIDE
(@)DIV(33)

R

DIV(33)
Dd
Dr

Divides the 4-digit BCD dividend (Dd) by
the 4-digit BCD divisor (Dr), and outputs
the result to the specified result words. R
receives the quotient; R + 1 receives the
remainder. R and R + 1 must be in the
same data area.

R + 1 RDd (Dr

Dd/Dr:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

LOGICAL AND
(@)ANDW(34)

ANDW(34)
I1
I2
R

Logically ANDs two 16-bit input words (I1
and I2) and sets the bits in the result word
(R) if the corresponding bits in the input
words are both ON.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

Program m ingInstructions Appendix B

286

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

LOGICAL OR
(@)ORW(35)

ORW(35)
I1
I2
R

Logically ORs two 16-bit input words (I1
and I2) and sets the bits in the result word
(R) when one or both of the corresponding
bits in the input words is/are ON.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

EXCLUSIVE OR
(@)XORW(36) XORW(36)

I1
I2
R

Exclusively ORs two 16-bit input words (I1
and I2) and sets the bits in the result word
(R) when the corresponding bits in input
words differ in status.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

EXCLUSIVE NOR
(@)XNRW(37)

I1
I2
R

XNRW(37)

Exclusively NORs two 16-bit input words
(I1 and I2) and sets the bits in the result
word (R) when the corresponding bits in
both input words have the same status.

I1/I2:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

INCREMENT
(@)INC(38)

INC(38)
Wd

Increments the value of a 4-digit BCD word
(Wd) by one, without affecting carry (CY).

Wd:
IR
HR
AR
LR
DM

DECREMENT
(@)DEC(39)

DEC(39)
Wd

Decrements the value of a 4-digit BCD
word by 1, without affecting carry (CY).

Wd:
IR
HR
AR
LR
DM

SET CARRY
(@)STC(40)

STC(40)

Sets the Carry Flag (i.e., turns CY ON). None

CLEAR CARRY
(@)CLC(41)

CLC(41)

Clears the Carry Flag (i.e, turns CY OFF). None

Appendix BProgram m ingInstructions

287

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

DISPLAY MESSAGE
(@)MSG(46)

MSG(46)
FM

Displays eight words of ASCII code, start-
ing from FM, on the Programming Console
or GPC. All eight words must be in the
same data area.

FM

FM+ 7

C D

A B

D P

ABCD........DP

FM:
IR
HR
AR
LR
TC
DM
#

LONG MESSAGE
(@)LMSG(47)

LMSG(47)
S
D

Outputs a 32-character message to either
a Programming Console, or a device con-
nected via the RS-232C interface. The
output message must be in ASCII begin-
ning at address S. The destination of the
message is designated in D: 000 specifies
that the message is to be output to the
GPC; 001 specifies the RS-232C inter-
face, starting with the leftmost byte; and
002 specifies the RS-232C interface,
starting from the rightmost byte.

S:
IR
HR
AR
LR
TC
DM

D:
#000
#001
#002

---:
Not
used.

TERMINAL MODE
(@)TERM(48) TERM(48)

When the execution condition is ON, the
Programming Console operation mode is
changed to TERMINAL mode. There is no
program command available to change the
mode back to CONSOLE mode. Pressing
the CHNG Key on the Programming Con-
sole manually toggles between the two
modes.

None

SET SYSTEM
(@)SYS(49) SYS(49)

P

SYS(49) must be programmed at program
address 00001 with LD AR 1001 at pro-
gram address 00000.

The leftmost 8 bits of P must contain A3.
The status of bits 00, 01, 06, and 07 are
used to control the 4 operating parameters
described below.

If bit 00 of P is ON, the battery check will
be excluded from system error checks.

If bit 01 of P is ON, the PC will enter MONI-
TOR mode at startup, unless a Program-
ming Console connected to the CPU is not
set to MONITOR.

If bit 06 of P is ON, the Force Status Hold
Bit (SR 25211) will be effective at startup.

If bit 07 of P is ON, the I/O Status Hold Bit
(SR 25212) will be effective at startup.

P:
#

---:
Not used.

Program m ingInstructions Appendix B

288

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

BINARY ADD
(@)ADB(50)

ADB(50)
Au
Ad
R

Adds the 4-digit augend (Au), 4-digit ad-
dend (Ad), and content of CY and outputs
the result to the specified result word (R).

Ad

Au

+

+ CY

R

CY

Au/Ad:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

BINARY SUBTRACT
(@)SBB(51) SBB(51)

Mi
Su
R

Subtracts the 4-digit hexadecimal subtra-
hend (Su) and content of carry, from the
4-digit hexadecimal minuend (Mi), and out-
puts the result to the specified result word
(R).

Mi

Su

CY

R

CY

-

-

Mi/Su:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

BINARY MULTIPLY
(@)MLB(52)

MLB(52)
Md
Mr
R

Multiplies the 4-digit hexadecimal multipli-
cand (Md) and 4-digit multiplier (Mr), and
outputs the 8-digit hexadecimal result to
the specified result words (R and R+1). R
and R+1 must be in the same data area.

Md

Mr

R

R+1

X

Quotient

Remainder

Md/Mr:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

BINARY DIVIDE
(@)DVB(53)

DVB(53)
Dd
Dr
R

Divides the 4-digit hexadecimal dividend
(Dd) by the 4-digit divisor (Dr), and outputs
result to the designated result words (R
and R + 1). R and R + 1 must be in the same
data area.

D
d
Dr

R

R+ 1

(

Quotient

Remainder

Dd/Dr:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR

Appendix BProgram m ingInstructions

289

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

DOUBLE BCD ADD
(@)ADDL(54) ADDL(54)

Au
Ad
R

Adds two 8-digit values (2 words each) and
the content of CY, and outputs the result to
the specified result words. All words for
any one operand must be in the same data
area.

Au+ 1

+ Ad+ 1

+

CY R+ 1

CY

Au

Ad

R

Au/Ad:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

DOUBLE BCD
SUBTRACT
(@)SUBL(55)

SUBL(55)
Mi
Su
R

Subtracts both the 8-digit BCD subtrahend
and the content of CY from an 8-digit BCD
minuend, and outputs the result to the spe-
cified result words. All words for any one
operand must be in the same data area.

Mi + 1 Mi

-- Su + 1 Su

--

CY R + 1 R

CY

Mi/Su:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

DOUBLE BCD
MULTIPLY
(@)MULL(56) MULL(56)

Md
Mr
R

Multiplies the 8-digit BCD multiplicand and
8-digit BCD multiplier, and outputs the re-
sult to the specified result words. All words
for any one operand must be in the same
data area.

Md+ 1 Md

Mr+ 1 Md

R + 3 R + 2 R + 1 R

X

Md/Mr:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

Program m ingInstructions Appendix B

290

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

DOUBLE BCD DIVIDE
(@)DIVL(57) DIVL(57)

Dd
Dr
R

Divides the 8-digit BCD dividend by an
8-digit BCD divisor, and outputs the result
to the specified result words. All words for
any one operand must be in the same data
area.

Dd + 1 Dd

Dr + 1 Dr

R + 1 R

R + 3 R + 2

Quotient

Remainder

(

Dd/Dr:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

DOUBLE
BCD-TO-DOUBLE
BINARY (@)BINL(58) BINL(58)

S
R

Converts the BCD value of the two source
words (S: starting word) into binary and
outputs the converted data to the two result
words (R: starting word). All words for any
one operand must be in the same data
area.

S

S + 1

R

R + 1

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

DOUBLE
BINARY-TO-DOUBLE
BCD
(@)BCDL(59)

BCDL(59)
S
R

Converts the binary value of the two
source words (S: starting word) into eight
digits of BCD data, and outputs the con-
verted data to the two result words (R:
starting result word). Both words for any
one operand must be in the same data
area.

S

S + 1

R

R + 1

S:
IR
SR
HR
AR
LR
DM

R:
IR
HR
AR
LR
DM

DOUBLE COMPARE
CMPL(60)

CMPL(60)
S1
S2

Compares the 8-digit hexadecimal values
in words S1+1 and S1 with the values in
S2+1 and S2, and indicates the result
using the Greater Than, Less Than, and
Equal Flags in the AR area. S1+1 and
S2+1 are regarded as the most
significant data in each pair of words.

S1,S2:
IR
SR
HR
AR
LR
TC
DM

Appendix BProgram m ingInstructions

291

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

GROUP-2 HIGH-DENSI-
TY I/O REFRESH
MPRF(61) MPRF(61)

St
E

Refreshes I/O words allocated to Group-2
High-density I/O Units with I/O numbers St
through E.This will be in addition to the nor-
mal I/O refresh performed during the
CPU’s cycle.

MPRF(61) can be used to refresh I/O
words allocated to Group-2 High-density
I/O Units (IR 030 to IR 049) only. Normally
these words are refreshed only once per
cycle, but refreshing words before use in
an instruction can increase execution
speed.

St must be less than or equal to E.

St/E:
(0000 to 0009)

COLUMN-TO-WORD
(@)CTW(63)

CTW(63)
S
C
D

Fetches data from the same numbered bit
(C) in 16 consecutive words (where S is the
address of the first source word), and
creates a 4-digit word by consecutively
placing the data in the bits of the destina-
tion word, D.
The bit from word S is placed into bit 00 of
D, the bit from word S+1 is placed into bit
01, etc.

S

S+1

S+15

0

1

0

0

1

0

00

01

15

Bit C D

S:
IR
SR
HR
AR
LR
TC
DM

C:
IR
SR
HR
AR
LR
TC
DM
#

D:
IR
SR
HR
AR
LR
TC
DM

WORD-TO-COLUMN
(@)WTC(64)

WTC(64)
S
D
C

Places bit data from the source word (S),
consecutively into the same numbered
bits of the 16 consecutive destination
words (where D is the address of the first
destination word).
Bit 00 from word S is placed into bit C of
word D, bit 01 from word S is placed into
bit C of word D+1, etc.

D

D+1

D+15

1

1

0

1

1

0

00

01

15

Bit CS

S:
IR
SR
HR
AR
LR
TC
DM

D:
IR
SR
HR
AR
LR
TC
DM

C:
IR
SR
HR
AR
LR
TC
DM
#

Program m ingInstructions Appendix B

292

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

HOURS-TO-SECONDS
(@)HTS(65) HTS(65)

S
R

Converts a time given in hours/minutes/
seconds (S and S+1) to an equivalent time
in seconds only (R and R+1). S and S+1
must be BCD and within one data area. R
and R+1 must also be within one data
area.

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
SR
HR
AR
LR
TC
DM

---:
Not
used.

SECONDS-TO-HOURS
(@)STH(66) STH(66)

S
R

Converts a time given in seconds (S and
S+1) to an equivalent time in hours/minu-
tes/seconds (R and R+1). S and S+1 must
be BCD between 0 and 35,999,999, and
within the same data area. R and R+1
must also be within one data area.

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
SR
HR
AR
LR
TC
DM

---:
Not
used.

BIT COUNTER
(@)BCNT(67) BCNT(67)

N
SB
R

Counts the number of ON bits in one or
more words (SB is the beginning source
word) and outputs the result to the speci-
fied result word (R). N gives the number of
words to be counted. All words in which bit
are to be counted must be in the same data
area.

N:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
TC
DM

SB:
IR
SR
HR
AR
LR
TC
DM

BLOCK COMPARE
(@)BCMP(68)

BCMP(68)
S

CB
R

Compares a 1-word binary value (S) with
the 16 ranges given in the comparison
table (CB is the starting word of the com-
parison block). If the value falls within any
of the ranges, the corresponding bits in the
result word (R) will be set. The comparison
block must be within one data area.

S

CB CB+1
CB+2 CB+3
CB+4 CB+5

CB+30 CB+31

1
0
1

0

Lower limit Upper limit

Lower limit ' S ' Upper limit 1

Result

S:
IR
SR
HR
AR
LR
TC
DM
#

CB:
IR
SR
HR
LR
TC
DM

R:
IR
HR
AR
LR
TC
DM

Appendix BProgram m ingInstructions

293

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

VALUE CALCULATE
(@)VCAL(69)

VCAL(69)
C
S
D

Xm (max. x-coordinate for this table)

Y0

X1

Y1

X2

Y2

Xm

Ym

Calculates the cosine, or sine of the given
degree value, or determines the y-coordi-
nate of the given x value in a previously es-
tablished line graph. For the sine and co-
sine conversions, S is entered in BCD as
an angle (in the range 0.0 to 90.0 degrees).
When calculating the y-coordinate in a
graph, S gives the address of the value of
the x-coordinate. The calculated data is
transferred to the destination word (D).
Sine and cosine results are given in BCD.
Line graph coordinate calculations (inter-
polation) can be in BCD or BIN.
The data in the control word (C) deter-
mines which operation is performed. If C is
entered as a constant with a value of 0000
or 0001, the sine or cosine, respectively, of
the source data value is calculated. If C is
entered as a word designation, it gives the
address of the first word of the data table
for the line graph. The value of the first two
digits gives m--1, where m is the number of
data points for which coordinates are given
on the line graph. Bits 14 and 15, respec-
tively, specify the output and input data for-
mats (0 indicates BCD, 1 indicates binary).

Y

X
XmX4X3X2X1

Ym

Y4

Y3
Y1
Y2

Y0

15
14 08 07

00000000

Input
data
format

Output
data
format

m--1, where m is the
number of data points
whose coordinates are
specified in the table

C

C+1

C+2

C+3

C+4

C+5

C+6

C+(2m+1)

C+(2m+2)

C:
IR
SR
HR
AR
LR
TC
DM
#

S:
IR
SR
HR
AR
LR
TC
DM

D:
IR
SR
HR
AR
LR
TC
DM

Program m ingInstructions Appendix B

294

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

BLOCK TRANSFER
(@)XFER(70) XFER(70)

N
S
D

Moves the content of several consecutive
source words (S gives the address of the
starting source word) to consecutive desti-
nation words (D is the starting destination
word). All source words must be in the
same data area, as must all destination
words. Transfers can be within one data
area or between two data areas, but the
source and destination words must not
overlap.

S

S + 1

D

D + 1

S+N--1 D+N--1

No. of
Words

N:
IR
SR
HR
AR
LR
TC
DM
#

S :
IR
HR
AR
LR
TC
DM

D:
IR
SR
HR
AR
LR
TC
DM
#

BLOCK SET
(@)BSET(71) BSET(71)

S
St
E

Copies the content of one word or constant
(S) to several consecutive words (from the
starting word, St, through to the ending
word, E). St and E must be in the same
data area.

S St

E

St/E:
IR
HR
AR
LR
TC
DM

S:
IR
SR
HR
AR
LR
TC
DM
#

SQUARE ROOT
(@)ROOT(72)

ROOT(72)
Sq
R

Computes the square root of an 8-digit
BCD value (Sq and Sq + 1) and outputs the
truncated 4-digit, integer result to the spe-
cified result word (R). Sq and Sq + 1 must
be in the same data area.

Sq+1 Sq

R

Sq:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

DATA EXCHANGE
(@)XCHG(73)

XCHG(73)
E1
E2

Exchanges the contents of two words (E1
and E2).

E1 E2

E1/E2:
IR
HR
AR
LR
TC
DM

Appendix BProgram m ingInstructions

295

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

ONE DIGIT SHIFT LEFT
(@)SLD(74)

SLD(74)
St
E

Shifts all data, between the starting word
(St) and ending word (E), one digit (four
bits) to the left, writing zero into the right-
most digit of the starting word. St and E
must be in the same data area.

E

St

St + 1

0

St/E:
IR
HR
AR
LR
DM

ONE DIGIT SHIFT
RIGHT
(@)SRD(75)

SRD(75)
E
St

0 St

Shifts all data, between starting word (St)
and ending word (E), one digit (four bits) to
the right, writing zero into the leftmost digit
of the ending word. St and E must be in the
same data area.

E

E -- 1

St/E:
IR
HR
AR
LR
DM

4-TO-16 DECODER
(@)MLPX(76)

MLPX(76)
S
Di
R

Converts up to four hexadecimal digits in
the source word (S), into decimal values
from 0 to 15, and turns ON the correspond-
ing bit(s) in the result word(s) (R). There is
one result word for each converted digit.
Digits to be converted are designated by
Di. (The rightmost digit specifies the first
digit. The next digit to the left gives the
number of digits to be converted minus 1.
The two leftmost digits are not used.)

S 0 to F

R

0015

S:
IR
SR
HR
AR
LR
TC
DM

Di:
IR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

16-TO-4 ENCODER
(@)DMPX(77)

DMPX(77)
S
R
Di

Determines the position of the leftmost ON
bit in the source word(s) (starting word: S)
and turns ON the corresponding bit(s) in
the specified digit of the result word (R).
One digit is used for each source word.
Digits to receive the converted values are
designated by Di. (The rightmost digit
specifies the first digit. The next digit to left
gives the number of words to be converted
minus 1. The two leftmost digits are not
used.)

S

15 00

0 to FR

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

Di:
IR
HR
AR
LR
TC
DM
#

Program m ingInstructions Appendix B

296

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

7-SEGMENT DECODER
(@)SDEC(78) SDEC(78)

S
Di
D

Converts hexadecimal values from the
source word (S) into 7-segment display
data. Results are placed in consecutive
half-words, starting at the first destination
word (D). Di gives digit and destination de-
tails. (The rightmost digit gives the first digit
to be converted. The next digit to the left
gives the number of digits to be converted
minus 1. If the next digit is 1, the first con-
verted data is transferred to left half of the
first destination word. If it is 0, the transfer
is to the right half).

S

D 0 to F

S:
IR
SR
HR
AR
LR
TC
DM

Di:
IR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

FLOATING POINT
DIVIDE
(@)FDIV(79) FDIV(79)

Dd
Dr
R

Divides one floating point value by another
and outputs a floating point result. The
rightmost seven digits of each set of two
words (eight digits) are used for mantissa,
and the leftmost digit is used for the expo-
nent and its sign (Bits 12 to 14 give the ex-
ponent value, 0 to 7. If bit 15 is 0, the expo-
nent is positive; if it’s 1, the exponent is
negative).

(

Dd + 1 Dd

Dr + 1 Dr

R + 1 R

Dd/Dr:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

SINGLE WORD
DISTRIBUTE
(@)DIST(80) DIST(80)

S
DBs
Of

Moves one word of source data (S) to the
destination word whose address is given
by the destination base word (DBs) plus
offset (Of).

S Base (DBs)
+

Offset (OF)

(S) (DBs + Of)

S:
IR
SR
HR
AR
LR
TC
DM
#

DBs:
IR
HR
AR
LR
TC
DM

Of:
IR
HR
AR
LR
TC
DM
#

Appendix BProgram m ingInstructions

297

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

DATA COLLECT
(@)COLL(81) COLL(81)

SBs
Of
D

Extracts data from the source word and
writes it to the destination word (D). The
source word is determined by adding the
offset (Of) to the address of the source
base word (SBs).

Base (DBs)
+

Offset (OF)

(SBs+Of) (D)

SBs:
IR
SR
HR
AR
LR
TC
DM

Of:
IR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
TC
DM

MOVE BIT
(@)MOVB(82)

MOVB(82)
S
Bi
D

Transfers the designated bit of the source
word or constant (S) to the designated bit
of the destination word (D). The rightmost
two digits of the bit designator (Bi) specify
the source bit. The two leftmost digits
specify the destination bit.

S

D

S:
IR
SR
HR
AR
LR
DM
#

Bi:
IR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

MOVE DIGIT
(@)MOVD(83)

MOVD(83)
S
Di
D

Moves hexadecimal content of up to four
specified 4-bit source digit(s) from the
source word to the specified destination
digit(s) (S gives the source word address.
D specifies the destination word). Specific
digits within the source and destination
words are defined by the Digit Designator
(Di) digits. (The rightmost digit gives the
first source digit. The next digit to the left
gives the number of digits to be moved.
The next digit specifies the first digit in the
destination word.)

S

D

15 00

S:
IR
SR
HR
AR
LR
TC
DM
#

Di:
IR
HR
AR
LR
TC
DM
#

D:
IR
SR
HR
AR
LR
TC
DM

Program m ingInstructions Appendix B

298

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

REVERSIBLE SHIFT
REGISTER
(@)SFTR(84) SFTR(84)

C
St
E

Shifts bits in the specified word or series of
words either left or right. Starting (St) and
ending words (E) must be specified. Con-
trol word (C) contains shift direction, reset
input, and data input. (Bit 12: 0 = shift right,
1 = shift left. Bit 13 is the value shifted into
the source data, with the bit at the opposite
end being moved to CY. Bit 14: 1 = shift en-
abled, 0 = shift disabled. If bit 15 is ON
when SFTR(89) is executed with an ON
condition, the entire shift register and CY
will be set to zero.) St and E must be in the
same data area and St must be less than
or equal to E.

CY

E St

1
5

0
0

CY

E

IN

St
IN

001112131415

Not usedC

0
0

1
5

0
0

1
5

0
0

1
5

St/E/C:
IR
HR
AR
TC
LR
DM

TABLE COMPARE
(@)TCMP(85) TCMP(85)

CD
TB
R

Compares a 4-digit hexadecimal value
(CD) with values in table consisting of 16
words (TB: is the first word of the compari-
son table). If the value of CD falls within
any of the comparison ranges, corre-
sponding bits in result word (R) are set (1
for agreement, and 0 for disagreement).
The table must be entirely within the one
data area.

CD Tb

Tb+1

Tb+13
Tb+14
Tb+15

1: agreement
0: disagreement

0

1

1
0
1

R

0

CD:
IR
SR
HR
AR
LR
TC
DM
#

TB/R:
IR
HR
AR
LR
TC
DM

Appendix BProgram m ingInstructions

299

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

ASCII CONVERT
(@)ASC(86)

ASC(86)
S
Di
D

Converts hexadecimal digits from the
source word (S) into 8-bit ASCII values,
starting at leftmost or rightmost half of the
starting destination word (D). The right-
most digit of Di designates the first source
digit. The next digit to the left gives the
number of digits to be converted. The next
digit specifies the whether the data is to be
transferred to the rightmost (0) or leftmost
(1) half of the first destination word. The
leftmost digit specifies parity:

0: none,
1: even, or
2: odd.

S

D 8-bit
data

0 to F

15 08 07 00

S:
IR
SR
HR
AR
LR
TC
DM

Di:
IR
HR
LR
TC
DM
#

D:
IR
HR
LR
DM

INTERRUPT CONTROL
(@)INT(89)

INT(89)
CC
N
D

Controls programmed (scheduled) inter-
rupts and interrupts from Interrupt Input
Units. Each PC can have up to 4 IIUs. N de-
fines the source of the interrupt: 000 to 003
designate the no. of the IIU; 004 desig-
nates a scheduled interrupt. In IIUs, bits 00
to 07 identify the interrupting subroutine,
higher bits are not used. Bit 00 of Unit 0 cor-
responds to interrupt subroutine 00,
through to bit 07 of Unit 3 which corre-
sponds to subroutine 31. CC is the control
code, the meaning of which depends on
the value of N, as follows:

CC N = 000 to 003 N = 004

000

001

002

Masks and unmasks interrupt
bits for the designated Unit
(N) according to the data in D.
Bits corresponding to ON bits
in D are masked, those corre-
sponding to OFF bits are un-
masked. Masked bits are re-
corded and will be executed
when they are unmasked (un-
less previously cleared).

Clears the masked interrupt
bits of the designated Unit (N)
according to the correspond-
ing ON bits in D. The subrou-
tines corresponding to bits
cleared in this manner will not
be executed when the bit is
unmasked.

Copies the mask status of the
designated IIU to D.

The interrupt time in-
terval is set accord-
ing to the data in D
(00.01 to 99.99 s)
The decimal point is
not entered. The in-
terrupt is cancelled if
D is 00.00.

The time to the first
interrupt is set ac-
cording to the data in
D (00.01 to 99.99 s)
The decimal point is
not entered. The in-
terrupt is cancelled if
D is 00.00.

Copies the time inter-
val data to D.

CC:
000 to
002

N:
000 to
004

D:
IR
HR
AR
LR
TC
DM
#

Program m ingInstructions Appendix B

300

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

NETWORK SEND
(@)SEND(90)
(CPU31-E) SEND(90)

S
D
C

Transfers data from n source words (S is
the starting word) to the destination words
(D is the first address) in node N of the spe-
cified network (in a SYSMAC LINK or NET
Link System). The format of the control
words varies depending on the type of sys-
tem. In both types of systems, the first con-
trol word (C) gives the number of words to
be transferred.
For NET Link Systems, in word C+1, bit 14
specifies the system (0 for system 1, and
1 for system 0), and the rightmost 7 bits de-
fine the network number. The left half of
word C+2 specifies the destination port
(00: NSB, 01/02: NSU), and the right half
specifies the destination node number. If
the destination node number is set to 0,
data is transmitted to all nodes.
For SYSMAC LINK Systems, the right half
of C+1 specifies the response monitoring
time (default 00: 2 s, FF: monitoring dis-
abled), the next digit to the left gives the
maximum number of re-transmissions (0
to 15) that the PC will attempt if no re-
sponse signal is received. Bit 13 specifies
whether a response is needed (0) or not
(1), and bit 14 specifies the system number
(0 for system 1, and 1 for system 0). The
right half of C+2 gives the destination node
number. If this is set to 0, the data will be
sent to all nodes.

C

C+1

C+2

C

C+1

SYSMAC NET

SYSMAC LINK

n: no. of words to be transmitted (0 to 1000)

0X00 0000 Network no. (0 to 127)

Destination port no. Destination node no.
(0 to 126)

n: no. of words to be transmitted, 0 to 1000

0XX0 Re-trans-
missions

Response monitor time
(0.1 to 25.4 s)

0000
Destination node no.
(0 to 62)0000C+2

Destination node NSource N

S

S+1

S+n--1

D

D+1

D+n--1

S:
IR
SR
HR
AR
LR
TC
DM

D/C:
IR
HR
AR
LR
TC
DM

SUBROUTINE ENTRY
(@)SBS(91) SBS(91) N

Calls subroutine N. Moves program opera-
tion to the specified subroutine.

N:
00 to 99

Appendix BProgram m ingInstructions

301

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

SUBROUTINE DEFINE
SBN(92) SBN(92) N

Marks the start of subroutine N. N:
00 to 99

SUBROUTINE RETURN
RET(93) RET(93)

Marks the end of a subroutine and returns
control to the main program.

None

WATCHDOG TIMER
REFRESH
(@)WDT(94) WDT(94) T

Sets the maximum and minimum limits for
the watchdog timer (normally 0 to 130 ms).
New limits:
Maximum time = 130 + (100 x T)
Minimum time = 130 + (100 x (T--1))

T:
0 to 63

I/O REFRESH
(@)IORF(97)

IORF(97)
St
E

Can refresh I/O words allocated to CPU or
Expansion I/O Racks and Special I/O
Units. Normally these words are refreshed
only once per cycle, but refreshing words
before use in an instruction can increase
execution speed.

To refresh I/O words allocated to CPU or
Expansion I/O Racks (IR 000 to IR 030),
indicate the first (St) and last (E) I/O words
to be refreshed. All words between St and
E will be refreshed when IORF(97) is ex-
ecuted.

To refresh I/O words allocated to Special
I/O Units (IR 100 to IR 199), indicate the
first (St) and last (E) unit numbers of the
units. IR 040 to IR 049 correspond to Spe-
cial I/O Units 0 to 9.

St must be less than or equal to E.

St/E:
IR

Program m ingInstructions Appendix B

302

IR SR HR TR AR LR TC DM #

00000 to 23515 23600 to 25507 HR 0000 to 9915 TR 0 to 7 AR 0000 to 2715 LR 0000 to 6315 TC 000 to 511 Read/Wr: DM 0000 to DM 0999
Rd only: DM 1000 to DM 1999

0000 to 9999
or 0000 to FFFF

These footnote tables show the actual ranges of all data areas. Bit numbers are provided (except for DM and TC areas); remove the rightmost two digits for word numbers.
Data Areas

Name
Mnemonic

Operand Data AreasFunctionSymbol

NETWORK RECEIVE
(@)RECV(98)
(CPU31-E) RECV(98)

S
D
C

n: no. of words to be transmitted, 0 to 1000

Response monitor time
(0.1 to 25.4 s)

Source node no.
(0 to 62)

n: no. of words to be transmitted (0 to 1000)

Network no. (0 to 127)

Source node no.
(0 to 126)

Transfers data from the source words (S is
the first word) from node N of the specified
network (in a SYSMAC LINK or NET Link
System) to the destination words starting
at D. The format of the control words va-
ries depending on the type of system. In
both types of systems, the first control
word (C) gives the number of words to be
transferred.
For NET Link Systems, in the second word
(C+1), bit 14 specifies the system (0 for
system 1, and 1 for system 0), and the
rightmost 7 bits define the network num-
ber. The left half of word C+2 specifies the
source port (00: NSB, 01/02: NSU), and
the right half specifies the source node
number.
For SYSMAC LINK Systems, the right half
of C+1 specifies the response monitoring
time (default 00: 2 s, FF: monitoring dis-
abled), the next digit to the left gives the
maximum number of re-transmissions (0
to 15) that the PC will attempt if no re-
sponse signal is received. Bit 13 specifies
whether a response is needed (0) or not
(1), and bit 14 specifies the system num-
ber (0 for system 1, and 1 for system 0).
The right half of C+2 gives the source
node number.

C

C+1

C+2

C

C+1

SYSMAC NET

SYSMAC LINK

0X00 0000

Source port no.
(NSB: 00, NSU: 01/02)

0XX0 Re-trans-
missions

0000 0000C+2

Destination nodeSource node N

S

S+1

S+n--1

D

D+1

D+n--1

S:
IR
SR
HR
AR
LR
TC
DM

C/D:
IR
HR
AR
LR
TC
DM

303

Appendix C
Programming Console Operations

The table below lists the Programming Console operations, a brief description, and the page on which they appear
in the body of this manual. All operations are described briefly, and the key sequence for inputting them given, in
the tables which form the second part of this appendix.

Name Function Reference

Password Input Prompts the user for the access password. 60

Buzzer ON/OFF Controls whether the buzzer will sound for keystroke inputs. 61

Data Clear Used to erase data, either selectively or totally, from the Program Memory
and the IR, AR, HR, DM, and TC areas.

61

I/O Table Register Registers the I/O table after initial entry or subsequent amendments. 61

I/O Table Verify Checks the I/O Table against the actual arrangement of I/O Units. 64

I/O Table Read Displays the Unit type, location, allocated I/O word, and word multiplier
(where applicable).

66

NET Link Link Table
Transfer

Transfers a copy of the NET Link System’s Link Table to the user memory
(UM) area.

69

I/O Table Delete Deletes the entire I/O Table. 68

Address Designation Displays the specified address. 71

Program Input Used to edit or input program instructions. 72

Program Read Allows the user to scroll through the program address-by-address. In
RUN and MONITOR modes, status of bits is also given.

71

Program Search Searches a program for the specified data address or instruction. 78

Instruction Insert
Instruction Delete

Allows a new instruction to be inserted before the displayed instruction, or
deletes the displayed instruction (respectively).

79

Program Check Checks the completed program for syntax errors (up to three levels in
H-type PCs).

75

Error Message Read Displays error messages in sequence, starting with the most severe mes-
sages.

64

Bit/Word Monitor Displays the specified address whose operand is to be monitored. In RUN
or MONTR mode it will show the status of the operand for any bit or word in
any data area.

230

3-word Monitor Simultaneously monitors three consecutive words. 238

Forced Set/Reset Set: Used to turn ON bits or timers, or to increment counters currently
displayed on the left of the screen.
Reset: Used to turn OFF bits, or to reset timers or counters.

233

Clear Forced Set/Reset Simultaneously clears all forced bits within the currently displayed word. 235

Hex/BCD Data Change Used to change the value of the leftmost BCD or hexadecimal word dis-
played during a Bit/Word Monitor operation.

236

Binary Data Change Changes the value of 16-bit words bit-by-bit. Bits can be changed tempo-
rarily or permanently to the desired status.

241

SV Change/SV Reset Alters the SV of a timer or counter either by incrementing or decrementing
the value, or by overwriting the original value with a new one.

243

3-word Change Used to change the value of a word displayed during a 3-word Monitor
operation.

239

Cycle Time Display Measures the duration of the current cycle. Cycle times will vary accord-
ing to the execution conditions which exist in each cycle.

77

Hex-ASCII Display
Change

Converts 4-digit hexadecimal data in the DM area to ASCII and vice-ver-
sa.

237

Binary Monitor Displays the monitored area in binary format. 240

Program Memory Save Saves Program Memory to tape. 246

Program Memory Restore Reads Program Memory from tape. 249

Program m ingConsoleOperations Appendix C

304

Name ReferenceFunction

Program Memory Com-
pare

Compares Program Memory data on tape with that in the Program
Memory area.

249

DM Data Save, Restore,
Compare

The save, restore, and compare tape operations for DM area data. 250

System Operations

Operation/Description Modes* Key sequence

Password Input
Controls access to the PC’s pro-
gramming functions. To gain ac-
cess to the system once “PASS-
WORD” has been displayed,
press CLR, MONTR, and then
CLR.

R M P
CLR MONTR CLR

Buzzer ON/OFF
The buzzer can be switched to
operate whenever Programming
Console keys are pressed (as
well as for the normal error indi-
cation). BZ is displayed in the up-
per right corner when the buzzer
is operative. The buzzer can be
enabled by pressing SHIFT and
then 1 immediately after entering
the password, or after changing
the mode.

R M P
SHIFT

B
1

Data Clear
Unless otherwise specified, this
operation will clear all erasable
memory in Program Memory and
IR, HR, AR, DM, and TC areas.
To clear EPROM memory the
write enable switch must be ON
(i.e., enabled). The branch lines
shown are used only when per-
forming a partial memory clear,
with each of the memory areas
entered being retained. Specify-
ing an address will result in the
Program Memory after and in-
cluding that address being de-
leted. All memory up to that ad-
dress will be retained.

P
CLR

PLAY

SET
NOT

REC

RESET
MONTR

HR

CNT

DM

[Address] Partial
Clear

Retained if
pressed

All Clear

I/O Table Register
Whenever I/O Unit changes are
made that affect the operation of
the system, the I/O table needs to
be corrected to reflect the
changes. This includes the initial
registration once the system has
been established.

P
CLR FUN SHIFT

*
CH

CHG 9 7
B

1
D

3 WRITE

I/O Table Verify
Used to check that the registered
I/O Table matches the actual ar-
rangement of I/O Units. Pressing
VER displays the next inconsis-
tency.

R P M
CLR FUN SHIFT

*
CH

VER VER

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix CProgram m ingConsoleOperations

305

Operation/Description Modes* Key sequence

I/O Table Read
Used to read the I/O Table. The
display gives the Unit type, loca-
tion, I/O word allocation, and
word multiplier (where applica-
ble). Rack and unit numbers will
vary according to the system in
use. The EXT key can be
pressed to allow Remote I/O
Slave Racks and Optical I/O
Units to be selected. If shift is
pressed before the arrow key, the
Rack and unit numbers need not
be specified.

(Group-2 High-density I/O Units
will not be displayed in the I/O
table when it is displayed using a
GPC, FIT, or host computer.)

R P M
CLR FUN SHIFT

*
CH

MONTR[Rack no.] [Unit no.]

MONTR SHIFT

SHIFT

To select Remote I/O Slave
Racks or Optical I/O Units

C200H

All PCs

C1000H/C2000H
C200H

NET Link Table Transfer
Copies the Data Link Table to
program memory, either RAM or
EPROM. This allows the user
program and the Data Link Table
to be written to EPROM together
(for the CPU31-E only). When
power is applied to a PC with
Data Link Tables stored in pro-
gram memory, the table will auto-
matically overwrite the CPU Data
Link Table. Changes made to the
table do not affect the copy in pro-
gram memory. To update the
copy in program memory, the
transfer operation must be re-
peated. Transfer will not work if:
a) the memory is not RAM or
EPROM, or if the memory is wri-
te-protected. b) there is no
END(01) instruction. c) the con-
tents of the program memory ex-
ceeds 2.3K for a 4K word
memory, or 6.4K for an 8K word
memory.

P
CLR FUN SHIFT WRITEEXT

I/O Table Delete
Clears the entire I/O table. The
cursor should be at the program
address of the table.

P
CLR FUN SHIFT

*
CH

CHG

WRITE

NOT

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Program m ingConsoleOperations Appendix C

306

Programming Operations
Operation/Description Modes* Key sequence

Address Designation
Displays the specified address.
Can be used to start program-
ming from a non-zero address or
to access an address for editing.
Leading zeros need not be en-
tered. The contents of the ad-
dress will not be displayed until
the down key is pressed. The up
and down keys can then be used
to scroll through the Program
Memory.

R P M
CLR [Address]

Program Input
Used to enter or edit program in-
structions. This operation over-
writes the contents of the
memory at the displayed ad-
dress. Once at the desired ad-
dress, enter the new instruction
word and then press WRITE
(preceded by NOT for differen-
tiated instructions). Input the re-
quired operands, and press
WRITE after each.

P
Address
displayed

[Instruction
word]

[Operand]

Program Read
Allows the user to scroll through
the program address-by-ad-
dress. If the Program Memory is
read in RUN or MONITOR mode,
the ON/OFF status of each dis-
played bit is also shown.

R P M
Address
currently
displayed

Program Search
Allows the program to be
searched for occurrences of any
designated instruction or data
area address. To designate a bit
address, press SHIFT, CONT/#,
and then input the address. Then
press SRCH. Pressing SRCH
again will find the next occur-
rence. For multi-word instruc-
tions, the up and down keys can
be used to scroll through the
words before continuing the
search. In RUN or MONITOR
mode, the ON/OFF status of
each monitored bit will also be
displayed. Applicable data areas
vary according to the PC being
used.

R P M
CLR SRCH SRCH

CLR SHIFT
CONT

#

SRCH SRCH

LR

HR

HRSHIFT

TIM

CNT

[Instruction]

[Address]

(AR)

Scroll through mul-
ti-word instruc-
tions

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix CProgram m ingConsoleOperations

307

Operation/Description Modes* Key sequence

Instruction Insert and
Instruction Delete
The displayed instruction can be
deleted, or another instruction
can be inserted before it. Care
should be taken to avoid inadver-
tent deletions as there is no way
of recovering the instructions oth-
er than to re-enter them. When
an instruction is deleted all sub-
sequent instruction addresses
are automatically adjusted so
that there are no empty address-
es, or instructions without ad-
dresses.

P
INSAt the desired position in

program:

DEL
Instruc-
tion
currently
displayed

[Enter new
instruction]Insert

Delete

Program Check
Once a program has been en-
tered, it should be checked for er-
rors. This program check can be
used to search for three levels of
syntax errors. Details of the er-
rors covered by each level are
given in the relevant manuals.
The address where the error was
generated will also be displayed.

P
CLR SRCH

A
0

B
1

C
2

SRCH SRCH

CLR

Press SRCH to find
next error.

Cancel

(0, 1, 2: check levels)

Error Message Read
Displays error messages in se-
quence with most severe mes-
sages displayed first. Press mon-
itor to access remaining mes-
sages. In PROGRAM mode,
pressing MONTR clears the dis-
played message from memory
and the next message is dis-
played.

R P M
CLR FUN MONTR MONTR

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Program m ingConsoleOperations Appendix C

308

Monitoring and Data Changing Operations

Operation/Description Modes* Key sequence

Bit/Word Monitor
Up to six memory addresses,
containing either words or bits, or
a combination of the two, can be
monitored at once. Only three
can be displayed at any one time.
If operated in RUN or MONITOR
mode, the status of monitored
bits will also be displayed.
The operation can be started
from a cleared display by enter-
ing the address of the first word or
bit to be monitored and pressing
MONTR, or from any address in
the program by displaying the ad-
dress of the bit or word to be mon-
itored and pressing MONTR.
When a timer or counter is moni-
tored, its PV will be displayed and
a box is displayed in the bottom
left hand corner if the Completion
Flag is ON.

R P M

CLR SHIFT
CONT

#

LR

HR

SHIFT HR

LD

OUT

TIM

CNT

DM

MONTR

CLR

[Address]

Cancel

Clears the left-
most address
from the screen.

3-word Monitor
Monitors three consecutive
words simultaneously. Specify
the lowest valued address of the
three words, press MONTR, and
then press EXT to display the
data contents of the specified
word and the two words that fol-
low. Pressing CLR will change
the three-word monitor operation
into a single-word display.

R P M

EXT
Bit/Word monitor in progress.
Currently monitored words
appear on the left of the
screen.

Forced Set/Reset
If a bit, timer, or counter address
is leftmost on the screen during a
Bit/Word Monitor operation,
pressing PLAY/SET will turn ON
the bit, start the timer, or incre-
ment the counter. Pressing REC/
RESET will turn OFF the bit, or
reset the timer or counter. These
force-sets and force-resets are
effective while the key is held
down.
Permanent sets and resets can
be implemented by pressing
SHIFT first, the force operations
will be effective until NOT is
pressed, or until a Clear Forced
Set/Reset operation is per-
formed. Timers will not operate in
PROGRAM mode. SR bits are
not affected by this operation.

P M PLAY

SET

REC

RESET

Bit/Word monitor in progress. Bit
or Timer/Counter currently moni-
tored appears on left of the screen.

SHIFT

REC

RESET

PLAY

SET

NOT

SHIFT

Clear Forced Set/Reset
Simultaneously clears all forced
set and forced reset bits within
the word currently displayed.

P M
CLR

REC

RESET

PLAY

SET
NOT

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix CProgram m ingConsoleOperations

309

Operation/Description Modes* Key sequence

Hex/BCD Data Change
Used to edit the leftmost BCD or
hexadecimal value displayed
during a Bit/Word Monitor opera-
tion. If a timer or counter is left-
most on the display, the PV will be
the value displayed and affected
by this operation. It can only be
changed in MONITOR mode and
only while the timer or counter is
operating. SR words cannot be
changed using this operation.

P M
CHG WRITE[New data]

Bit/Word monitor in progress.
Currently monitored word ap-
pears on the left of the screen.

Binary Data Change
This operation is used to change
the value of IR, HR, AR, LR, or
DM words bit-by-bit. The cursor
can be moved left by using the up
key, and right by using the down
key. The position of the cursor is
the bit that will be overwritten.
There are two types of changes
on the C200H, temporary and
permanent. Temporary changes
result if 1 or 0 is entered. Perma-
nent changes are made by press-
ing SHIFT and SET, or SHIFT
and RESET. The former will re-
sult in an S being displayed in
that bit position. Similarly, SHIFT
and RESET will produce an R in
the display.
During operation of the PC, the
bits having 1 or 0 values will
change according to the program
conditions. Bits with S or R, how-
ever, will always be treated as a
1 or 0, respectively. NOT cancels
S and R settings and the bits will
become 1 or 0, respectively.

P M

CHG
B

1

A
0

WRITE
Binary monitor
in progress. Word
currently dis-
played.

SHIFT

REC

RESET

PLAY

SET

NOT

SHIFT

SV Change,
SV Reset
There are two ways of modifying
the SVs for timers and counters.
One method is to enter a new val-
ue.
The second is to increment or
decrement the existing SV. In
MONITOR mode the SV can be
changed while the program is be-
ing executed. Incrementing and
decrementing can only be carried
out if the SV has been entered as
a constant.

P M
M CHG

Timer/Counter
currently displayed WRITE[New SV]

WRITEEXT

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Program m ingConsoleOperations Appendix C

310

Operation/Description Modes* Key sequence

3-word Change
This operation changes the value
of a word displayed during a
3-word Monitor operation. The
blinking cursor indicates the word
that will be affected by the opera-
tion. The cursor can be moved by
using the up and down keys.
When the cursor is at the desired
location, press CHG. After enter-
ing the new data, pressing
WRITE causes the original data
to be overwritten.

P M

WRITECHG
3-word Monitor
in progress [Data]

Cycle Time Display
This operation should be per-
formed after all syntax errors
have been corrected. The cycle
time can only be checked in RUN
or MONITOR mode and while the
program is being executed. The
cycle time displayed after press-
ing CLR and MONTR is that for
the current cycle. Pressing
MONTR again will display a new
cycle time. Any difference be-
tween successive cycle times is
due to the different execution
conditions that exist during each
cycle.

R M
CLR MONTR MONTR

Hex/ASCII Display Change
Converts 4-digit hexadecimal
DM data to ASCII and vice-versa.

R P M

TR
Word currently
displayed

Binary Monitor
The contents of a monitored word
can be specified to be displayed
in binary by pressing SHIFT and
MONTR after entering the word
address. Words can be scrolled
by pressing the up and down
keys to increment and decrement
the displayed address. To termi-
nate the binary display, press
CLR.

R P M
[Word address]

Binary monitor cancel

All monitor cancel

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix CProgram m ingConsoleOperations

311

Cassette Tape Operations
Operation/Description Modes* Key sequence

Program Memory Save
Copies data from the Program
Memory to tape. The file no. spe-
cified in the instructions provides
an identifying address for the in-
formation within the tape. Each
file number should be used only
once per tape. If only a part of the
Program Memory is to be stored,
the appropriate start and stop ad-
dresses must be entered. Each
C60 tape can store approximate-
ly 16K words on each side of the
tape. When the start address is
entered, the maximum stop ad-
dress is set as the default. Do not
set a stop address greater than
this one. If you wish to record
past this address the additional
information will need to be re-
corded either on the flip side of
the tape or on a separate tape.
After starting the tape recorder,
wait about 5 seconds before
pressing SHIFT REC/RESET.
This is to allow the leader tape to
pass before the data transmis-
sion starts.

P
EXT

A
0 WRITECLR

WRITE
Start recording with the
tape recorder. SHIFT

REC

RESET

[File no.] [Start address]

[Stop address]

After about 5 seconds**
(Cancel with the CLR key).

Program Memory Restore
To read Program Memory data
which has been recorded on a
cassette tape, the keystrokes are
as given here. The file number
must be the same as the one en-
tered when the data was re-
corded. The read operation will
proceed from the specified start
address up to the end of the tape,
unless halted by a CLR com-
mand. The instruction must be
completed before the required
data is reached on the tape, i.e.,
usually before the leader tape fi-
nishes.

P

PLAY

SET

EXT
A

0 WRITECLR

SHIFT
Start tape recorder playback.

[File no.] [Start address]

Within about 5 seconds**

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

**These times take the cassette leader tape into consideration according to the following:
a) When recording to tape, the leader tape needs to be allowed to pass before the data transmission to the tape player starts.
b) When restoring from tape or comparing data, the Programming Console needs to be ready to receive data before the data is transfered
from the tape.

Program m ingConsoleOperations Appendix C

312

Operation/Description Modes* Key sequence

Program Memory Compare
The procedure to compare Pro-
gram Memory data stored on a
tape with that in the PC’s Pro-
gram Memory area is the same
as that for reading it (see above),
except that after starting the tape
playback, VER should be
pressed instead of SHIFT and
PLAY/SET.

P

VER

EXT
A

0 WRITECLR

Start tape recorder playback.

[File no.] [Start address]

Within about 5 seconds**

DM Data Save, Restore, Com-
pare
The procedures for transferring
DM area data to and from tape,
and for comparing it, are basical-
ly the same as for the Program
Memory, given above. The ex-
ceptions are that start and stop
addresses are not required, and
the DM area is specified instead
of the Program Memory. Each
operation will continue through to
the end of the tape unless can-
celled by pressing CLR.

P
EXTCLR

[File no.]

VER

B
1

Start tape recorder playback.

SHIFT

SHIFT

REC

RESET

PLAY

SET

Start tape recorder record-
ing.

5 second leader tape**

Saving

Restoring

Comparing

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

**These times take the cassette leader tape into consideration according to the following:
a) When recording to tape, the leader tape needs to be allowed to pass before the data transmission to the tape player starts.
b) When restoring from tape or comparing data, the Programming Console needs to be ready to receive data before the data is transfered
from the tape.

313

Appendix D
Error and Arithmetic Flag Operation

The following table shows the instructions that affect the ER, CY, GT, LT andEQ flags. In general, ER indicates that
operand data is not within requirements. CY indicates arithmetic or data shift results. GR indicates that a com-
pared value is larger thansome standard, LE that it is smaller, andEQ, that it is the same. EQ also indicates a result
of zero for arithmetic operations. Refer to Section 5 Instruction Set for details.
Vertical arrows in the table indicate the flags that are turned ON and OFF according to the result of the instruction.
Although ladder diagram instructions,TIM, and CNT are executedwhen ER is ON, other instructions with avertical
arrow under the ER column are not executed if ER is ON. All of the other flags in the following table will also not
operate when ER is ON.
These flags are turned OFF with the END instruction and so cannot be monitored from the Programming Device.
The statuses of the flags will show the results of the most recently executed instruction. With a differentiated
instruction, flag statuses will be changed only in the first scan when the execution condition of the instruction is
satisfied; during all other scans, the differentiated instruction will not affect the statuses of the flags determined by
the previous instruction (i.e., until the execution condition is satisfied again.)
Instructions not shown do not affect any of the flags in the table. Although only the non-differentiated form of each
instruction is shown, differentiated instructions affect flags in exactly the same way.

Instructions 25503 (ER) 25504 (CY) 25505 (GR) 25506 (EQ) 25507 (LE)

TIM Unaffected Unaffected Unaffected Unaffected

CNT

END(01) OFF OFF OFF OFF OFF

STEP(08) Unaffected Unaffected Unaffected Unaffected Unaffected

SNXT(09)

CNTR(12) Unaffected Unaffected Unaffected Unaffected

TIMH(15)

WSFT(16)

RWS(17)

SCAN(18)

MCMP(19) Unaffected

CMP(20)

MOV(21) Unaffected Unaffected Unaffected

MVN(22)

BIN(23)

BCD(24)

ASL(25) Unaffected Unaffected

ASR(26)

ROL(27)

ROR(28)

COM(29) Unaffected Unaffected Unaffected

ADD(30) Unaffected Unaffected

SUB(31)

MUL(32) Unaffected Unaffected Unaffected

DIV(33)

ANDW(34)

ORW(35)

XORW(36)

XNRW(37)

INC(38)

DEC(39)

ErrorandArithmeticFlagOperation Appendix D

314

Instructions 25507 (LE)25506 (EQ)25505 (GR)25504 (CY)25503 (ER)

STC(40) Unaffected ON Unaffected Unaffected Unaffected

CLC(41) Unaffected OFF Unaffected Unaffected Unaffected

MSG(46) Unaffected Unaffected Unaffected Unaffected

LMSG(47)

TERM(48) Unaffected Unaffected Unaffected Unaffected Unaffected

SYS(49)

ADB(50) Unaffected Unaffected

SBB(51)

MLB(52) Unaffected Unaffected Unaffected

DVB(53)

ADDL(54) Unaffected Unaffected

SUBL(55)

MULL(56) Unaffected Unaffected Unaffected

DIVL(57)

BINL(58)

BCDL(59)

CMPL(60) Unaffected

MPRF(61) Unaffected Unaffected Unaffected Unaffected Unaffected

CTW(63) Unaffected Unaffected Unaffected

WTC(64)

HTS(65)

STH(66)

BCNT(67)

BCMP(68)

VCAL(69)

XFER(70) Unaffected Unaffected Unaffected Unaffected

BSET(71)

ROOT(72) Unaffected Unaffected Unaffected

XCHG(73) Unaffected Unaffected Unaffected Unaffected

SLD(74)

SRD(75)

MLPX(76)

DMPX(77)

SDEC(78)

FDIV(79)

DIST(80)

COLL(81)

MOVB(82)

MOVD(83)

SFTR(84) Unaffected Unaffected Unaffected

TCMP(85) Unaffected Unaffected Unaffected

ASC(86) Unaffected Unaffected Unaffected Unaffected

INT(89)

SEND(90)

SBS(91)

Appendix DErrorandArithmeticFlagOperation

315

Instructions 25507 (LE)25506 (EQ)25505 (GR)25504 (CY)25503 (ER)

SBN(92) Unaffected Unaffected Unaffected Unaffected Unaffected

RET(93)

WDT(94)

BPRG(96)

IORF(97)

RECV(98) Unaffected Unaffected Unaffected Unaffected

317

Appendix E
Data Areas

The data areas in the C200H are summarized below. Prefixes are included with bit and word addresses when
inputting them is required to designate the area, i.e., bits/words input without a prefix are considered to be IR or SR
bits/words.

Area Bits Words Notes

IR 00000 to 23515 000 to 235 Words 000 through 029 are allocated to I/O Units on the
CPU and Expansion I/O Racks as needed.
Words 030 through 049 are allocated to Group-2
High-density I/O Units as needed.
Words 050 through 231 are allocated to Special I/O Units
and Units on Remote I/O Racks as needed.

When any of these words are not needed, they are
available for use as work bits.

SR 23600 to 25507 236 to 255 Bits 25200 to 25507 are dedicated for specific purposes
and can not be used for other purposes. Bits 23600 to
25115 are available when not used for their assigned
purposes. In designating operands, the SR area is
considered as a continuation of the IR area. See tables of
dedicated bits following this table.

HR HR 0000 to
HR 9915

HR 00 to HR 99 HR bits are available for general data storage and
manipulation. The HR area maintains bit status when PC
power is turned off.

AR AR 0000 to
AR 2715

AR 00 to AR 27 AR bits are mostly dedicated for specific purposes.
Unused AR bits may be used as works bits. See tables of
dedicated bits following this table.

LR LR 0000 to LR 6315 LR 00 to LR 63 LR bits are used for data exchange in PC Link Systems.
When the PC does not include a PC Link System, LR bits
may be used for data links in SYSMAC LINK or SYSMAC
NET Link Systems. LR bits may be used as work bits when
not used for data links.

DM Not accessible as
bits.

Read/write:
DM 0000 to DM 0999
Read only:
DM 1000 to DM 1999

DM 0000 through DM 0999 are generally used for data
storage. DM 1000 through DM 1999 are read-only and
used for Special I/O Units.

In the CPU31-E, DM 0969 through DM 0999 are used in
the Error History function and also for data links in
SYSMAC LINK or SYSMAC NET Link Systems.

TC (TC 000 to TC 511) (TC 000 to TC 511) The TC area consists of TC numbers used to manipulate
and access timers and counters. When used as a bit
operand, a TC number accesses the Completion Flag for
the timer or counter defined using the TC number. When
used as a word operand, the TC number accesses the
present value of the timer or counter.

TR (TR 0 to TR 7) Not accessible as words. TR bits can only be used in the LOAD and OUTPUT
instructions to store and retrieve execution conditions.
Storing and retrieving execution conditions is necessary
when programming certain types of branching ladder
diagrams.

DataAreas Appendix E

318

Dedicated Bits
Most of the bits in the SR and AR area are dedicated for specific purposes. These are summarized in the following
tables. Refer to 3-4 SR Area and 3-5 AR Area for details.

SR Allocations
As a rule, SR area bits can be used only for the purposes for which they are dedicated. The SR area contains flags
and control bits used for monitoring PC operation, accessing clock pulses, and signalling errors. SR area word
addresses range from 236 through 255; bit addresses, from 23600 through 25507.

Word(s) Bit(s) Function

236 00 to 07 Node loop status output area for operating level 0 of SYSMAC NET Link System

08 to 15 Node loop status output area for operating level 1 of SYSMAC NET Link System

237 00 to 07 Completion code output area for operating level 0 following execution of SEND(90)/RECV(98)
SYSMAC LINK/SYSMAC NET Link System

08 to 15 Completion code output area for operating level 1 following execution of SEND(90)/RECV(98)
SYSMAC LINK/SYSMAC NET Link System

238 to 241 00 to 15 Data link status output area for operating level 0 of SYSMAC LINK or SYSMAC NET Link
System

242 to 245 00 to 15 Data link status output area for operating level 1 of SYSMAC LINK or SYSMAC NET Link
System

246 00 to 15 Not used.

247 to 250 00 to 07 PC Link Unit Run Flags or data link status for operating level 1

08 to 15 PC Link Unit Error Flags or data link status for operating level 1

251 00 to 15 Remote I/O Error Flags

252 00 SEND(90)/RECV(98) Error Flag for operating level 0 of SYSMAC LINK/SYSMAC NET Link
System

01 SEND(90)/RECV(98) Enable Flag for operating level 0 of SYSMAC LINK/SYSMAC NET Link
System

02 Operating Level 0 Data Link Operating Flag

03 SEND(90)/RECV(98) Error Flag for operating level 1 of SYSMAC LINK/SYSMAC NET Link
System

04 SEND(90)/RECV(98) Enable Flag for operating level 1 of SYSMAC LINK/SYSMAC NET Link
System

05 Operating Level 1 Data Link Operating Flag

06 Host Computer to Rack-mounting Host Link Unit Level 1 Error Flag

07 Rack-mounting Host Link Unit Level 1 Restart Bit

08 CPU-mounting Host Link Unit Error Flag

09 CPU-mounting Host Link Unit Restart Bit

10 Not used.

11 Forced Status Hold Bit

12 Data Retention Control Bit

13 Rack-mounting Host Link Unit Level 0 Restart Bit

14 Not used.

15 Output OFF Bit

253 00 to 07 FAL number output area.

08 Low Battery Flag (for batteries in RAM or EEPROM Memory Units, or the CPU31-E CPU)

09 Cycle Time Error Flag

10 I/O Verification Error Flag

11 Host Computer to rack-mounting Host Link Unit Level 0 Error Flag

12 Remote I/O Error Flag

13 Normally ON Flag

14 Normally OFF Flag

15 First cycle

Appendix EDataAreas

319

Word(s) FunctionBit(s)

254 00 1-minute clock pulse bit

01 0.02-second clock pulse bit

02 to 06 Reserved for function expansion. Do not use.

07 Step Flag

08 to 13 Reserved for function expansion. Do not use.

14 Group-2 High-density I/O Unit Error Flag

15 Special Unit Error Flag (Special I/O, PC Link, Host Link, Remote I/O Master, SYSMAC NET
Link, and SYSMAC LINK)

255 00 0.1-second clock pulse bit

01 0.2-second clock pulse bit

02 1.0-second clock pulse bit

03 Instruction Execution Error (ER) Flag

04 Carry (CY) Flag

05 Greater Than (GR) Flag

06 Equals (EQ) Flag

07 Less Than (LE) Flag

AR Word Allocations
AR word addresses extend from AR 00 to AR 27; AR bit addresses extend from AR 0000 to AR 2715. Most AR
area words and bits are dedicated to specific uses, such as transmission counters, flags, and control bits, and
words AR 00 through AR 06 and AR 23 through AR 27 cannot be used for any other purpose. Words and bits from
AR 07 to AR 22 are available as work words and work bits if not used for the following assigned purposes.

Word Use

AR 07 Error History Area

AR 07 to 15 SYSMAC LINK Units

AR 16, AR 17 SYSMAC LINK and SYSMAC NET Link Units

AR 18 to AR 21 Calendar/Clock Area

AR 07, AR 22 TERMINAL Mode Key Bits

AR Bit Allocations
Word(s) Bit(s) Function

00 00 to 09 Error Flags for Special I/O Units 0 to 9 (also function as Error Flags for PC Link Units)

10 Error Flag for operating level 1 of SYSMAC LINK or SYSMAC NET Link System

11 Error Flag for operating level 0 of SYSMAC LINK or SYSMAC NET Link System

12 Host Computer to Rack-mounting Host Link Unit Level 1 Error Flag

13 Host Computer to Rack-mounting Host Link Unit Level 0 Error Flag

14/15 Remote I/O Master Unit 1/Unit 0 Error Flags

01 00 to 09 Restart Bits for Special I/O Units 0 to 9 (also function as Restart Bits for PC Link Units)

10 Restart Bit for operating level 1 of SYSMAC LINK or SYSMAC NET Link System

11 Restart Bit for operating level 0 of SYSMAC LINK or SYSMAC NET Link System

12, 13 Not used.

14/15 Remote I/O Master Unit 1/Unit 0 Restart Bits

02 00 to 04 Error Flags for Slave Racks 0 to 4

05 to 14 Error Flags for Group-2 High-density I/O Units 0 to 9

15 Error Flag for an unrecognized Group-2 High-density I/O Unit

03 00 to 15 Error Flags for Optical I/O Units 0 to 7

04 00 to 15 Error Flags for Optical I/O Units 8 to 15

05 00 to 15 Error Flags for Optical I/O Units 16 to 23

06 00 to 15 Error Flags for Optical I/O Units 24 to 31

DataAreas Appendix E

320

Word(s) FunctionBit(s)

07 00 to 03 Data Link setting for operating level 0 of SYSMAC LINK System

04 to 07 Data Link setting for operating level 1 of SYSMAC LINK System

08 TERMINAL Mode Input Cancel Bit

09 to 12 Not used.

13 to 15 Error History Area (13: Overwrite Bit, 14: Reset Bit, 15: Enable Bit)

08 to 11 00 to 15 Active Node Flags for SYSMAC LINK System nodes of operating level 0

12 to 15 00 to 15 Active Node Flags for SYSMAC LINK System nodes of operating level 1

16 00 to 15 SYSMAC LINK/SYSMAC NET Link System operating level 0 service time per cycle

17 00 to 15 SYSMAC LINK/SYSMAC NET Link System operating level 1 service time per cycle

18 to 21 00 to 15 Calendar/Clock Area

In the CPU31-E, the calendar/clock function is contained in the CPU. In the CPU21-E and
CPU23-E, the calendar/clock function is contained in the Memory Unit, and only the
C200H-MR433/MR833/ME432/ME832 Memory Units have the calendar/clock function.

22 00 to 15 TERMINAL Mode Key Bits

23 00 to 15 Power-OFF Counter

24 00 to 03 Not used.

04 CPU Unit Low Battery Flag (CPU31-E only)

05 Cycle Time Flag

06 SYSMAC LINK System Network Parameter Flag for operating level 1

07 SYSMAC LINK System Network Parameter Flag for operating level 0

08 SYSMAC LINK/SYSMAC NET Link Unit Level 1 Mounted Flag

09 SYSMAC LINK/SYSMAC NET Link Unit Level 0 Mounted Flag

10 Not used.

11 PC Link Multilevel System: Level 1 Mounted Flag

12 PC Link Single-level System or Multilevel System Level 0 Mounted Flag

13 Rack-mounting Host Link Unit Level 1 Mounted Flag

14 Rack-mounting Host Link Unit Level 0 Mounted Flag

15 CPU-mounting Device Mounted Flag

25 00 to 15 FALS-generating Address

26 00 to 15 Maximum Cycle Time

27 00 to 15 Present Cycle Time

321

Appendix F
Word Assignment Recording Sheets

This appendix contains sheets that can be copied by the programmer to record I/O bit allocations and terminal
assignments, as well as details of work bits, data storage areas, timers, and counters.

322

Programmer: Program: Date: Page:

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

I/O Bits

323

Programmer: Program: Date: Page:

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Work Bits

324

Programmer: Program: Date: Page:

Word Contents Notes Word Contents Notes

Data Storage

325

Programmer: Program: Date: Page:

TC address T or C Set value Notes TC address T or C Set value Notes

Timers and Counters

327

Appendix G
Program Coding Sheet

The following page can be copied for use in coding ladder diagram programs. It is designed for flexibility, allowing
the user to input all required addresses and instructions.
When coding programs, be sure to specify all function codes for instructions and data areas (or # for constant) for
operands. These will be necessary when inputting programs though a Programming Console or other Peripheral
Device.

328

Programmer: Program: Date: Page:

Address Instruction Operand(s) Address Instruction Operand(s) Address Instruction Operand(s)

Program Coding Sheet

329

Appendix H
Data Conversion Table

Decimal BCD Hex Binary

00 00000000 00 00000000

01 00000001 01 00000001

02 00000010 02 00000010

03 00000011 03 00000011

04 00000100 04 00000100

05 00000101 05 00000101

06 00000110 06 00000110

07 00000111 07 00000111

08 00001000 08 00001000

09 00001001 09 00001001

10 00010000 0A 00001010

11 00010001 0B 00001011

12 00010010 0C 00001100

13 00010011 0D 00001101

14 00010100 0E 00001110

15 00010101 0F 00001111

16 00010110 10 00010000

17 00010111 11 00010001

18 00011000 12 00010010

19 00011001 13 00010011

20 00100000 14 00010100

21 00100001 15 00010101

22 00100010 16 00010110

23 00100011 17 00010111

24 00100100 18 00011000

25 00100101 19 00011001

26 00100110 1A 00011010

27 00100111 1B 00011011

28 00101000 1C 00011100

29 00101001 1D 00011101

30 00110000 1E 00011110

31 00110001 1F 00011111

32 00110010 20 00100000

331

Appendix I
Extended ASCII

Programming Console and Data Access Console Displays
Bits 0 to 3 Bits 4 to 7

BIN 0000 0001 0010 0011 0100 0101 0110 0111 1010 1011 1100 1101 1110 1111

HEX 0 1 2 3 4 5 6 7 A B C D E F

0000 0 NUL DLE Space 0 @ P ‘ p 0 @ P ‘ p

0001 1 SOH DC1 ! 1 A Q a q ! 1 A Q a q

0010 2 STX DC2 ” 2 B R b r ” 2 B R b r

0011 3 ETX DC3 # 3 C S c s # 3 C S c s

0100 4 EOT DC4 $ 4 D T d t $ 4 D T d t

0101 5 ENQ NAK % 5 E U e u % 5 E U e u

0110 6 ACK SYN & 6 F V f v & 6 F V f v

0111 7 BEL ETB ’ 7 G W g w ’ 7 G W g w

1000 8 BS CAN (8 H X h x (8 H X h x

1001 9 HT EM) 9 I Y i y) 9 I Y i y

1010 A LF SUB * : J Z j z * : J Z j z

1011 B VT ESC + ; K [k { + ; K [k {

1100 C FF FS , < L \ l | , < L \ l |

1101 D CR GS - = M] m } - = M] m }

1110 E S0 RS . > N ^ n « . > N ^ n

1111 F S1 US / ? O _ o ~ / ? O _ o ~

333

Glossary

address The location in memory where data is stored. For data areas, an address con-
sists of a two-letter data area designation and a number that designates the
word and/or bit location. For the UM area, an address designates the instruction
location (UM area). In the FM area, the address designates the block location,
etc.

allocation The process by which the PC assigns certain bits or words inmemory for various
functions. This includes pairing I/O bits to I/O points on Units.

AND A logic operation whereby the result is true if and only if both premises are true.
In ladder-diagram programming the premises are usually ON/OFF states of bits
or the logical combination of such states called execution conditions.

APF Acronym for all plastic fiber-optic cable.

AR area A PC data area allocated to flags, control bits, and work bits.

arithmetic shift A shift operation wherein the carry flag is included in the shift.

ASCII Short for American Standard Code for Information Interchange. ASCII is used to
code characters for output to printers and other external devices.

ASCII Unit An Intelligent I/O Unit used to program in BASIC. When connected to an NSU on
a Net Link System, commands can be sent to other nodes.

Backplane A base onto which Units are mounted to form a Rack. Backplanes provide a se-
ries of connectors for these Units along with wiring to connect them to the CPU.
Backplanes also provide connectors used to connect them to other Backplanes.
In some Systems, different Backplanes are used for different Racks; in other
Systems, Racks differ only according to the Units mounted to them.

BCD Short for binary-coded decimal.

BCD calculation An arithmetic calculation that uses numbers expressed in binary-coded deci-
mal.

binary A number system where all numbers are expressed to the base 2, i.e., any num-
ber can be written using only 1’s or 2’s. Each group of four binary bits is equiva-
lent to one hexadecimal digit.

binary calculation An arithmetic calculation that uses numbers expressed in binary.

binary-coded decimal A system used to represent numbers so that each group of four binary bits is
numerically equivalent to one decimal digit.

bit A binary digit; hence a unit of data in binary notation. The smallest unit of infor-
mation that can be electronically stored in a PC. The status of abit is either ONor
OFF. Different bits at particular addresses are allocated to special purposes,
such as holding the status input from external devices, while other bits are avail-
able for general use in programming.

bit address The location in memory where a bit of data is stored. A bit address must specify
(sometimes by default) the data area and word that is being addressed, as well
as the number of the bit.

Glossary

334

bit designator An operand that is used to designate the bit or bits of a word to be used by an
instruction.

bit number A number that indicates the location of a bit within a word. Bit 00 is the rightmost
(least-significant) bit; bit 15 is the leftmost (most-significant) bit.

buffer A temporary storage space for data in a computerized device.

building-block PC A PC that is constructed from individual components, or “building blocks.” With
building-block PCs, there is no one Unit that is independently identifiable as a
PC. The PC is rather a functional assembly of components.

bus bar The line leading down the left and sometimes right side of a ladder diagram. In-
struction execution proceeds down the bus bar, which is the starting point for all
instruction lines.

call A process by which instruction execution shifts from the main program to a sub-
routine. The subroutine may be called by an instruction or by an interrupt.

carry flag A flag that is used with arithmetic operations to hold a carry from an addition or
multiplication operation, or to indicate that the result is negative in a subtraction
operation. The carry flag is also used with certain types of shift operations.

clock pulse A pulse available at a certain bit in memory for use in timing operations. Various
clock pulses are available with different pulse widths.

clock pulse bit A bit in memory that supplies a pulse that can be used to time operations. Vari-
ous clock pulse bits are available with different pulse widths, and thereforediffer-
ent frequencies.

common data Data that is stored in the LR Area of a PC and which is shared by other PCs in the
same the same system. Each PC has a specified section of the LR Area allo-
cated to it. This allocation is the same in each LR Area of each PC.

condition An message placed in an instruction line to direct the way in which the terminal
instructions, on the right side, are to beexecuted. Eachcondition is assigned toa
bit in memory that determines its status. The status of the bit assigned to each
condition determines, in turn, the execution condition for each instruction up to a
terminal instruction on the right side of the ladder diagram.

constant An operand for which the actual numeric value is specified by the user, and
which is then stored in a particular address in the data memory.

control bit A bit in a memory area that is set either through the program or via a Program-
ming Device to achieve a specific purpose, e.g., a Restart bit is turned ON and
OFF to restart a Unit.

Control System All of the hardware and software components used to control other devices. A
Control System includes the PC System, the PC programs, and all I/O devices
that are used to control or obtain feedback from the controlled system.

controlled system The devices that are being controlled by a PC System.

control signal A signal sent from the PC to effect the operation of the controlled system.

counter A dedicated group of digits or words in memory used to count the number of
times a specific process has occurred, or a location in memory accessed

Glossary

335

through a TC bit and used to count the number of times the status of a bit or an
execution condition has changed from OFF to ON.

CPU An acronym for central processing unit. In a PC System, the CPU executes the
program, processes I/O signals, communicates with external devices, etc.

CPU Backplane A Backplane which is used to create a CPU Rack.

CPU Rack Part of a building-block PC, the CPU Rack contains the CPU, a power supply,
and other Units. With most PCs, the CPU Rack is the only Rack that provides
linkable slots.

CTS An acronym for clear-to-send, a signal used in communications between elec-
tronic devices to indicate that the receiver is ready to accept incoming data.

cycle The process used to execute a ladder-diagram program. The program is ex-
amined sequentially from start to finish and each instruction is executed in turn
based on execution conditions.

cycle time The time required for a single cycle of the ladder-diagram program.

data area An area in the PC’s memory that is designed to hold a specific type of data, e.g.,
the LR area is designed to hold common data in a PC Link System. Memory
areas that hold programs are not considered data areas.

data area boundary The highest address available within a data area. When designating an operand
that requires multiple words, it is necessary to ensure that the highest address in
the data area is not exceeded.

data sharing An aspect of PC Link Systems and of Data Links in Net Link Systems in which
common data areas or common data words are created between two or more
PCs.

debug A process by which a draft program is corrected until it operates as intended.
Debugging includes both the removal of syntax errors, as well as the fine-tuning
of timing and coordination of control operations.

decimal A number system where all numbers are expressed to the base 10. In a PC all
data is ultimately stored in binary form, four binary bits are often used to repre-
sent one decimal digit, via a system called binary-coded decimal.

decrement Decreasing a numeric value.

default A value automatically set by the PC when the user omits to set a specific value.
Many devices will assume suchdefault conditions upon theapplication of power.

definer A number used as an operand for an instruction but that serves to define the in-
struction itself, rather that the data on which the instruction is to operate. Defin-
ers include jump numbers, subroutine numbers, etc.

delay In tracing, a value that specifies where tracing is to begin in relationship to the
trigger. A delay can be either positive or negative, i.e., can designate an offset on
either side of the trigger.

destination The location where an instruction is to place the data on which it is operating, as
opposed to the location from which data is taken for use in the instruction. The
location from which data is taken is called the source.

Glossary

336

differentiated instruction An instruction that is executed only once each time its execution condition goes
from OFF to ON. Nondifferentiated instructions are executed each cycle as long
as the execution condition stays ON.

differentiation instruction An instruction used to ensure that the operand bit is never turned ON for more
than one cycle after the execution condition goes either from OFF to ON for a
Differentiate Up instruction or from ON to OFF for a Differentiate Down instruc-
tion.

digit A unit of storage in memory that consists of four bits.

digit designator An operand that is used to designate the digit or digits of a word to be used by an
instruction.

distributed control An automation concept in which control of each portion of an automated system
is located near the devices actually being controlled, i.e., control is decentralized
and ‘distributed’ over the system. Distributed control is one of the fundamental
concepts of PC Systems.

DM area A data area used to hold only word data. Words in the DM area cannot be ac-
cessed bit by bit.

download The process of transferring a program or data from a higher-level computer to a
lower-level computer or PC.

electrical noise Random variations of one or more electrical characteristics suchas voltage, cur-
rent, and data, which might interfere with the normal operation of a device.

error code A numeric code generated to indicate that an error exists, and something about
the nature of the error. Some error codes are generated by the system; others
are defined in the program by the operator.

exclusive OR A logic operation whereby the result is true if one, and only one, of the premises
is true. In ladder-diagram programming the premises are usually the ON/OFF
states of bits, or the logical combination of such states, called execution condi-
tions.

exclusive NOR A logic operation whereby the result is true if bothof thepremises are true or both
of the premises are false. In ladder-diagram programming the premises areusu-
ally the ON/OFF states of bits, or the logical combination of such states, called
execution conditions.

exection condition The ON or OFF status under which an instruction is executed. The execution
condition is determined by the logical combination of conditions on the same in-
struction line and up to the instruction currently being executed.

execution time The time required for the CPU to execute either an individual instruction or an
entire program.

Expansion I/O Backplane A Backplane which is used to create an Expansion I/O Rack.

Expansion I/O Rack Part of a building-block PC, an Expansion I/O Rack is connected to either a CPU
Rack or another Expansion I/O Rack to increase the number of slots available
for mounting Units.

extended counter A counter created in a program by using two or more count instructions in suc-
cession. Such a counter is capable of counting higher than any of the standard
counters provided by the individual instructions.

Glossary

337

extended timer A timer created in a program by using two or more timers in succession. Such a
timer is capable of timing longer than any of the standard timers provided by the
individual instructions.

Factory Intelligent Terminal A programming device provided with advanced programming and debugging
capabilities to facilitate PC operation. The Factory Intelligent Terminal also pro-
vides various interfaces for external devices, such as floppy disk drives.

fatal error An error that stops PC operation and requires correction before operation can
continue.

FIT Abbreviation for Factory Intelligent Terminal.

flag A dedicated bit in memory that is set by thesystem to indicate some type of oper-
ating status. Some flags, such as the carry flag, can also be set by the operator
or via the program.

flicker bit A bit that is programmed to turn ON and OFF at a specific frequency.

floating point decimal A decimal number expressed as a number between 0and 1 (the mantissa) multi-
plied by a power of 10, e.g., 0.538 x 10-5.

Floppy Disk Interface Unit A Unit used to interface a floppy disk drive to a PC so that programs and/or data
can be stored on floppy disks.

force reset The process of forcibly turning OFF a bit via a programming device. Bits areusu-
ally turned OFF as a result of program execution.

force set The process of forcibly turning ON a bit via a programming device. Bits are usu-
ally turned ON as a result of program execution.

function code A two-digit number used to input an instruction into the PC.

GPC Acronym for Graphic Programming Console.

A programming device with advanced programming and debugging capabilities
to facilitate PC operation. A Graphic Programming Console is provided with a
large display onto which ladder-diagram programs can be written directly in lad-
der-diagram symbols for input into the PC without conversion to mnemonic
form.

hardware error An error originating in thehardware structure (electronic components) of thePC,
as opposed to a software error, which originates in software (i.e., programs).

hexadecimal A number system where all numbers are expressed to the base 16. In a PC all
data is ultimately stored in binary form, however, displays and inputs on Pro-
gramming Devices are often expressed in hexadecimal to simplify operation.
Each group of four binary bits is numerically equivalent to one hexadecimal digit.

Host Link System A system with one or more host computers connected to one or more PCs via
Host Link Units so that the host computer can be used to transfer data to and
from the PC(s). Host Link Systems enable centralized management and control
of PC Systems.

Host Link Unit An interface used to connect a PC to a host computer in a Host Link System.

host computer A computer that is used to transfer data or programs to from a PC in a Host Link
System. The host computer is used for data management and overall system
control. Host computers are generally personal or business computers.

Graphic Programming
Console

Glossary

338

HR area A data area used to store and manipulate data, and to preserve data when pow-
er to the PC is turned OFF.

increment Increasing a numeric value.

indirect address An address whose contents indicates another address. The contents of the sec-
ond address will be used as the operand. Indirect addressing is possible in the
DM area only.

initialization error An error that occurs either in hardware or software during the PC System star-
tup, i.e., during initialization.

initialize Part of the startup process whereby some memory areas are cleared, system
setup is checked, and default values are set.

input The signal coming from an external device into the PC. The term input is often
used abstractly or collectively to refer to incoming signals.

input bit A bit in the IR area that is allocated to hold the status of an input.

input device An external device that sends signals into the PC System.

input point The point at which an input enters the PCSystem. Input points correspondphys-
ically to terminals or connector pins.

input signal A change in the status of a connection entering the PC. Generally an input signal
is said to exist when, for example, a connection point goes from low to high volt-
age or from a nonconductive to a conductive state.

instruction A direction given in the program that tells the PC of an action to be carried out,
and which data is to be used in carrying out the action. Instructions can be used
to simply turn a bit ON or OFF, or they can perform much more complex actions,
such as converting and/or transferring large blocks of data.

instruction block A group of instructions that is logically related in a ladder-diagram program. Al-
though any logically related group of instructions could be called an instruction
block, the term is generally used to refer to blocks of instructions called logic
blocks that require logic block instructions to relate them to other instructions or
logic blocks.

instruction execution time The time required to execute an instruction. The execution time for any one in-
struction can vary with the execution conditions for the instruction and the oper-
ands used within it.

instruction line A group of conditions that lie together on the same horizontal line of a ladder dia-
gram. Instruction lines can branch apart or join together to form instruction
blocks.

interface An interface is the conceptual boundary between systems or devices and usual-
ly involves changes in the way the communicated data is represented. Interface
devices such as NSBs perform operations like changing the coding, format, or
speed of the data.

interlock A programming method used to treat a number of instructions as a group so that
the entire group can be reset together when individual execution is not required.
An interlocked program section is executed normally for an ON execution condi-
tion and partially reset for an OFF execution condition.

Glossary

339

interrupt (signal) A signal that stops normal program execution and causes a subroutine to be run.

Interrupt Input Unit A Rack-mounting Unit used to input external interrupts into a PC System.

inverse condition A condition that produces an ON execution condition when the bit assigned to it
is OFF, and an OFF execution condition when the bit assigned to it is ON.

I/O capacity The number of inputs and outputs that a PC is able to handle. This number
ranges from around one hundred for smaller PCs to two thousand for the largest
ones.

I/O Control Unit A Unit mounted to the CPU Rack in certain PCs to monitor and control I/O points
on Expansion I/O Units.

I/O devices The devices to which terminals on I/O Units, Special I/O Units, or Intelligent I/O
Units areconnected. I/O devices may be either part of the ControlSystem, if they
function to help control other devices, or they may be part of the controlled sys-
tem.

I/O Interface Unit A Unit mounted to an Expansion I/O Rack in certain PCs to interface the Expan-
sion I/O Rack to the CPU Rack.

I/O Link Created in an Optical Remote I/O System to enable input/output of one or two IR
words directly between PCs. The words are input/output between the PC con-
trolling the Master and a PC connected to the Remote I/O System through an I/O
Link Unit or an I/O Link Rack.

I/O Link Unit A Unit used with certain PCs to create an I/O Link in an Optical Remote I/O Sys-
tem.

I/O point The place at which an input signal enters the PC System, or at which an output
signal leaves the PC System. In physical terms, I/O points correspond to termi-
nals or connector pins on a Unit; in terms of programming, an I/O points corre-
spond to I/O bits in the IR area.

I/O response time The time required for an output signal to be sent from the PC in response to an
input signal received from an external device.

I/O table A table created within the memory of the PCthat lists the IRarea words allocated
to each Unit in the PC System. The I/O table can be created by, or modified from,
a Programming Device.

I/O Unit The most basic type of Unit mounted to a backplane to create a Rack. I/O Units
include Input Units and Output Units, each of which is available in a range of
specifications. I/O Units do not include Special I/O Units, Link Units, etc.

I/O word A word in the IR area that is allocated to a Unit in the PC System.

IR area A data area whose principal function is to hold the status of inputs coming into
thesystem and that of outputs that are tobe set out of the system. Bits andwords
in the IR that are used this way are called I/O bits and I/O words. The remaining
bits in the IR area are work bits.

JIS Acronym for Japanese Industrial Standards.

jump A type of programming where execution moves directly from one point in a pro-
gram to another, without sequentially executing any instructions inbetween.
Jumps are usually conditional on an execution condition.

Glossary

340

jump number A definer used with a jump that defines the points from and to which a jump is to
be made.

ladder diagram (program) A form of program arising out of relay-based control systems that uses cir-
cuit-type diagrams to represent the logic flow of programming instructions. The
appearance of the program is similar to a ladder, and thus the name.

ladder diagram symbol A symbol used in a ladder-diagram program.

ladder instruction An instruction that represents the ‘rung’ portion of a ladder-diagram program.
The other instructions in a ladder diagram fall along the right side of the diagram
and are called terminal instructions.

Ladder Support Software A software package that provides most of the functions of the Factory Intelligent
Terminal on an IBM AT, IBM XT, or compatible computer.

LAN An acronym for local area network.

leftmost (bit/word) The highest numbered bits of a group of bits, generally of an entire word, or the
highest numbered words of a group of words. These bits/words are often called
most-significant bits/words.

Link Adapter A Unit used toconnect communications lines, either to branch the lines or tocon-
vert between different types of cable. There are two types of Link Adapter:
Branching Link Adapters and Converting Link Adapters.

link A hardware or software connection formed between two Units. “Link” can refer
either to a part of the physical connection between two Units (e.g., optical links in
Wired Remote I/O Systems) or a software connection created to data existing at
another location (Network Data Links).

linkable slot A slot on either a CPU or Expansion I/O Backplane to which a Link Unit can be
mounted. Backplanes differ in the slots to which Link Units can be mounted.

Link System A system that includes one or more of the following systems: Remote I/O Sys-
tem, PC Link System, Host Link System, or Net Link System.

Link Unit Any of the Units used to connect a PC to a Link System. These are Remote I/O
Units, I/O Link Units, PC Link Units, Host Link Units, and Net Link Units.

load The processes of copying data either from an external device or from a storage
area to an active portion of the system such as a display buffer. Also, an output
device connected to the PC is called a load.

local area network A network consisting of nodes or positions in a loop arrangement. Each node
can be any one of a number of devices, which can transfer data to and from each
other.

logic block A group of instructions that is logically related in a ladder-diagram program and
that requires logic block instructions to relate it to other instructions or logic
blocks.

logic block instruction An instruction used to locally combine the execution condition resulting from a
logic block with a current execution condition. The current execution condition
could be the result of a single condition, or of another logic block. AND Load and
OR Load are the two logic block instructions.

logic instruction Instructions used to logically combine the content of two words and output the
logical results to a specified result word. The logic instructions combine all the

Glossary

341

same-numbered bits in the two words and output the result to the bit of the same
number in the specified result word.

loop A group of instructions that can be executed more than once in succession (i.e.,
repeated) depending on an execution condition or bit status.

LR area A data area that is used in a PC Link System so that data can be transferred be-
tween two or more PCs. If a PC Link System is not used, the LR area is available
for use as work bits.

LSS Abbreviation for Ladder Support Software.

main program All of a program except for the subroutines.

masking ‘Covering’ an interrupt signal so that the interrupt is not effective until the mask is
removed.

Master Short for Remote I/O Master Unit.

memory area Any of the areas in the PC used to hold data or programs.

mnemonic code A form of a ladder-diagram program that consists of a sequential list of the in-
structions without using a ladder diagram. Mnemonic code is required to input a
program into a PC when using a Programming Console.

MONITOR mode A mode of PC operation in which normal program execution is possible, and
which allows modification of data held in memory. Used for monitoring or debug-
ging the PC.

most-significant (bit/word) See leftmost (bit/word).

NC input An input that is normally closed, i.e., the input signal is considered to be present
when the circuit connected to the input opens.

nest Programming one loop within another loop, programming a call to a subroutine
within another subroutine, or programming an IF-ELSE programming section
within another IF-ELSE section.

Net Link System An optical LAN formed from PCs connected through Net Link Units. A Net Link
System also normally contains nodes interfacing computers and other periph-
eral devices. PCs in the Net Link System can pass data back and forth, receive
commands from any interfaced computer, and share any interfaced peripheral
device.

Net Link Unit The Unit used to connect PCs to a Net Link System. The full name is “SYSMAC
Net Link Unit.”

Network Service Board A device with an interface to connect devices other than PCs to a Net Link Sys-
tem.

Network Service Unit A Unit that provides two interfaces to connect peripheral devices to a Net Link
System.

node One of the positions in a LAN. Eachnode incorporates a device that cancommu-
nicate with the devices at all of the other nodes. The device at a node is identified
by thenodenumber. One loopof aNet Link System (OMRON’s LAN) canconsist
of up to 126 nodes. Each node is occupied by a Net Link Unit mounted to a PC or
a device providing an interface to a computer or other peripheral device.

Glossary

342

NO input An input that is normally open, i.e., the input signal is considered to be present
when the circuit connected to the input closes.

noise interference Disturbances in signals caused by electrical noise.

nonfatal error A hardware or software error that produces a warning but does not stop the PC
from operating.

normal condition A condition that produces an ON execution condition when the bit assigned to it
is ON, and an OFF execution condition when the bit assigned to it is OFF.

NOT A logic operation which inverts the status of the operand. For example, AND
NOT indicates an AND operation with the opposite of the actual status of the op-
erand bit.

NSB An acronym for Network Service Board.

NSU An acronym for Network Service Unit.

OFF The status of an input or output when a signal is said not to be present. The OFF
state is generally represented by a low voltage or by non-conductivity, but canbe
defined as the opposite of either.

OFF delay The delay between the time when a signal is switched OFF (e.g., by an input
device or PC) and the time when the signal reaches a state readable as an OFF
signal (i.e., as no signal) by a receiving party (e.g., output device or PC).

ON The status of an input or output when a signal is said to be present. The ON state
is generally represented by a high voltage or by conductivity, but can be defined
as the opposite of either.

ON delay The delay between the time when an ON signal is initiated (e.g., by an input de-
vice or PC) and the time when the signal reaches a state readable as an ON sig-
nal by a receiving party (e.g., output device or PC).

one-shot bit A bit that is turned ON or OFF for a specified interval of time which is longer than
one cycle.

on-line removal Removing a Rack-mounted Unit for replacement or maintenance during PC op-
eration.

operand Bit(s) or word(s) designated as the data tobe used for an instruction. Anoperand
can be input as a constant expressing the actual numeric value to be used or as
an address to express the location in memory of the data to be used.

operand bit A bit designated as an operand for an instruction.

operand word A word designated as an operand for an instruction.

operating error An error that occurs during actual PC operation as opposed to an initialization
error, which occurs before actual operations can begin.

Optical I/O Unit A Unit that is connected in an Optical Remote I/O System to provide 8 I/O points.
Optical I/O Units are not mounted to a Rack.

Optical Slave Rack A Slave Rack connected through an Optical Remote I/O Slave Unit.

OR A logic operation whereby the result is true if either of two premises is true, or if
both are true. In ladder-diagram programming the premises are usually ON/OFF

Glossary

343

states of bits or the logical combination of such states called execution condi-
tions.

output The signal sent from the PC to an external device. The term output is often used
abstractly or collectively to refer to outgoing signals.

output bit A bit in the IR area that is allocated to hold the status to be sent to an output de-
vice.

output device An external device that receives signals from the PC System.

output point The point at which an output leaves the PC System. Output points correspond
physically to terminals or connector pins.

output signal A signal being sent to an external device. Generally an output signal is said to
exist when, for example, a connectionpoint goes from low to highvoltage or from
a nonconductive to a conductive state.

overseeing Part of the processing performed by the CPU that includes general tasks re-
quired to operate the PC.

overwrite Changing the content of a memory location so that the previous content is lost.

parity Adjustment of the number of ON bits in a word or other unit of data so that the
total is always an even number or always an odd number. Parity is generally
used to check the accuracy of data after being transmitted by confirming that the
number of ON bits is still even or still odd.

PC An acronym for Programmable Controller.

PCB An acronym for printed circuit board.

PC configuration The arrangement and interconnections of the Units that are put together to form
a functional PC.

PCF Acronym for plastic-clad optical fiber cable.

PC Link System A system in which PCs are connected through PC Link Units to enable them to
share common data areas, i.e., each of the PCs writes to certain words in the LR
area and receives the data of the words written by all other PC Link Units con-
nected in series with it.

PC Link Unit The Unit used to connect PCs in a PC Link System.

PC System With building-block PCs, all of the Racks and independent Units connected di-
rectly to them up to, but not including the I/O devices. The boundaries of a PC
System are the PC and the program in its CPU at the upper end; and the I/O
Units, Special I/O Units, Optical I/O Units, Remote Terminals, etc., at the lower
end.

peripheral device Devices connected to a PC System to aid in system operation. Peripheral de-
vices include printers, programming devices, external storage media, etc.

port A connector on a PC or computer that serves as a connection to an external de-
vice.

present value The current value registered in a device at any instant during its operation. Pres-
ent value is abbreviated as PV.

Glossary

344

printed circuit board A board onto which electrical circuits are printed for mounting into a computer or
electrical device.

Printer Interface Unit A Unit used to interface a printer so that ladder diagrams and other data can be
printed out.

program The list of instructions that tells the PC the sequence of control actions to be car-
ried out.

Programmable Controller A computerized device that can accept inputs from external devices and gener-
ate outputs to external devices according to a program held in memory. Pro-
grammable Controllers are used to automate control of external devices. Al-
though single-component Programmable Controllers are available, build-
ing-block Programmable Controllers are constructed from separate compo-
nents. Such building-block Programmable Controllers are formed only when
enough of these separate components are assembled to form a functional as-
sembly, i.e., no one individual Unit is called a PC.

programmed alarm An alarm given as a result of executionof an instruction designed to generate the
alarm in the program, as opposed to one generated by the system.

programmed error An error arising as a result of the execution of an instruction designed to gener-
ate the error in the program, as opposed to one generated by the system.

programmed message A message generated as a result of execution of an instruction designed to gen-
erate the message in the program, as opposed to one generated by the system.

Programming Console The simplest form or programming device available for a PC. Programming
Consoles are available both as hand-held models and as CPU-mounting mod-
els.

Programming Device A peripheral device used to input a program into a PC or to alter or monitor a
program already held in the PC. There are dedicated programming devices,
such as Programming Consoles, and there are non-dedicated devices, such as
a host computer.

PROGRAM mode A mode of operation that allows inputting and debugging of programs to be car-
ried out, but that does not permit normal execution of the program.

PROM Writer A peripheral device used to write programs and other data into a ROM for per-
manent storage and application.

prompt A message or symbol that appears on a display to request input from the opera-
tor.

PV Acronym for present value.

Rack An assembly of various Units on a Backplane that forms a functional unit in a
building-block PCSystem. Racks include CPURacks, Expansion I/O Racks, I/O
Racks, and Slave Racks.

refresh The process of updating output status sent to external devices so that it agrees
with the status of output bits held in memory and of updating input bits inmemory
so that they agree with the status of inputs from external devices.

relay-based control The forerunner of PCs. In relay-based control, groups of relays are intercon-
nected to form control circuits. In a PC, these are replaced by programmable cir-
cuits.

Glossary

345

Remote I/O Master Unit The Unit in a Remote I/O System through which signals are sent to all other Re-
mote I/O Units. The Remote I/O Master Unit is mounted either to a CPU Rack or
an Expansion I/O Rack connected to the CPU Rack. Remote I/O Master Unit is
generally abbreviated to Master.

Remote I/O Slave Unit A Unit mounted to a Backplane to form a Slave Rack. Remote I/O Slave Unit is
generally abbreviated to Slave.

Remote I/O System A system in which remote I/O points are controlled through a Master mounted to
a CPU Rack or an Expansion I/O Rack connected to the CPU Rack.

Remote I/O Unit Any of the Units in a Remote I/O System. Remote I/O Units include Masters,
Slaves, Optical I/O Units, I/O Link Units, and Remote Terminals.

remote I/O word An I/O word allocated to a Unit in a Remote I/O System.

reset The process of turning a bit or signal OFF or of changing the present value of a
timer or counter to its set value or to zero.

return The process by which instruction execution shifts from a subroutine back to the
main program (usually the point from which the subroutine was called).

reversible counter A counter that can be both incremented and decremented depending on the
specified conditions.

reversible shift register A shift register that can shift data in either direction depending on the specified
conditions.

right-hand instruction Another term for terminal instruction.

rightmost (bit/word) The lowest numbered bits of a group of bits, generally of an entire word, or the
lowest numbered words of a group of words. These bits/words are often called
least-significant bits/words.

rotate register A shift register in which the data moved out from one end is placed back into the
shift register at the other end.

RUN mode The operating mode used by the PC for normal control operations.

scheduled interrupt An interrupt that is automatically generated by the system at a specific time or
program location specified by the operator. Scheduled interrupts result in theex-
ecution of specific subroutines that can be used for instructions that must be ex-
ecuted repeatedly for a specified period of time.

self diagnosis A process whereby the system checks its own operation and generates a warn-
ing or error if an abnormality is discovered.

self-maintaining bit A bit that is programmed to maintain either an OFF or ON status until set or reset
by specified conditions.

servicing The process whereby the PC provides data to or receives data from external de-
vices or remote I/O Units, or otherwise handles data transactions for Link Sys-
tems.

set The process of turning a bit or signal ON.

set value The value from which a decrementing counter starts counting down or to which
an incrementing counter counts up (i.e., the maximum count), or the time from
which or for which a timer starts timing. Set value is abbreviated SV.

Glossary

346

shift register One or more words in whichdata is shifted aspecified number of units to the right
or left in bit, digit, or word units. In a rotate register, data shifted out one end is
shifted back into the other end. In other shift registers, new data (either specified
data, zero(s) or one(s)) is shifted into one end and the data shifted out at the oth-
er end is lost.

Slave Short for Remote I/O Slave Unit.

Slave Rack A Rack containing a Remote I/O Slave Unit and controlled through a Remote I/O
Master Unit. Slave Racks are generally located away from the CPU Rack.

slot A position on a Rack (Backplane) to which a Unit can be mounted.

software error An error that originates in a software program.

software protect A means of protecting data from being changed that uses software as opposed
to a physical switch or other hardware setting.

source The location from which data is taken for use in an instruction, as opposed to the
location to which the result of an instruction is to be written. The latter is called
the destination.

Special I/O Unit A dedicated Unit that is designed for a specific purpose. Special I/O Units in-
clude Position Control Units, High-Speed Counter Units, Analog I/O Units, etc.

SR area A data area in a PC used mainly for flags, control bits, and other information pro-
vided about PC operation. The status of only certain SR bits may be controlled
by the operator, i.e., most SR bits can only be read.

subroutine A group of instructions placed after the main program and executed only if called
from the main program or activated by an interrupt.

subroutine number A definer used to identify the subroutine that a subroutine call or interrupt acti-
vates.

SV Abbreviation for set value.

switching capacity The maximum voltage/current that a relay can safely switch on and off.

syntax error An error in the way in which a program is written. Syntax errors can include
‘spelling’ mistakes (i.e., a function code that does not exist), mistakes in specify-
ing operands within acceptable parameters (e.g., specifying reserved SR bits as
a destination), and mistakes in actual application of instructions (e.g., a call to a
subroutine that does not exist).

system configuration The arrangement in which Units in a system are connected.

system error An error generated by the system, as opposed to one resulting from execution of
an instruction designed to generate an error.

system error message An error message generated by the system, as opposed to one resulting from
execution of an instruction designed to generate a message.

TC area A data area that canbe usedonly for timers andcounters. Eachbit in the TCarea
serves as the access point for the SV, PV, and Completion flag for the timer or
counter defined with that bit.

TC number A definer that corresponds to a bit in the TC area and used to define the bit as
either a timer or a counter.

Glossary

347

terminal instruction An instruction placed on the right side of a ladder diagram that uses the final ex-
ecution conditions of an instruction line.

terminator The code comprising an asterisk and a carriage return (* CR) which indicates the
end of a block of data, whether it is a single-frame or multi-frame block. Frames
within a multi-frame block are separated by delimiters.

timer A location in memory accessed through a TC bit and used to time down from the
timer’s set value. Timers are turned ON and reset according to their execution
conditions.

TM area A memory area used to store the results of a trace.

transmission distance The distance that a signal can be transmitted.

TR area A data area used to store execution conditions so that they can be reloaded later
for use with other instructions.

trace An operation whereby the program is executed and the resulting data is stored in
TM memory to enable step-by-step analysis and debugging.

transfer The process of moving data from one location to another within the PC, or be-
tween the PC and external devices. When data is transferred, generally a copy
of the data is sent to the destination, i.e., the content of the source of the transfer
is not changed.

trigger address An address in the program that defines the beginning point for tracing. The ac-
tual beginning point can be altered from the trigger by defining either a positiveor
negative delay.

UM area The memory area used to hold the active program, i.e., the program that is being
currently executed.

Unit In OMRON PC terminology, the word Unit is capitalized to indicate any product
sold for a PC System. Though most of the names of these products end with the
word Unit, not all do, e.g., a Remote Terminal is referred to in a collective sense
as a Unit. Context generally makes any limitations of this word clear.

unit number A number assigned to some Link Units and Special I/O Units to facilitate identifi-
cation when assigning words or other operating parameters to it.

watchdog timer A timer within the system that ensures that the cycle time stays within specified
limits. When limits are reached, either warnings are given or PC operation is
stopped depending on the particular limit that is reached.

Wired Slave Rack A Slave Rack connected through a Wired Remote I/O Slave Unit.

word A unit of data storage in memory that consists of 16 bits. All data areas consists
of words. Some data areas can be accessed only by words; others, by either
words or bits.

word address The location in memory where a word of data is stored. A word address must
specify (sometimes by default) the data area and the number of the word that is
being addressed.

word multiplier A value between 0 and 3 that is assigned to a Master in a Remote I/O System so
that words can be allocated to non-Rack-mounting Units within the System. The

Glossary

348

word setting made on the Unit is added to 32 times the word multiplier to arrive at
the actual word to be allocated.

work bit A bit in a work word.

work word A word that can be used for data calculation or other manipulation in program-
ming, i.e., a ‘work space’ in memory. A large portion of the IR area is always re-
served for work words. Parts of other areas not required for special purposes
may also be usedas work words, e.g., LR words not used in aPC Link or Net Link
System.

349

Index

A
addresses,indataarea,17

applications,precautions,xiii

AR area,30–36

arithm eticflags,96

arithm eticoperations,flags,30

ASCII,convertingdata,157

B
backup
DM areadata,250
program ,246–248

battery
CPU31Low BatteryFlag,35
Low BatteryFlag,28

BCD
calculations,158–173
converting,17
definition,17

binary
calculations,174
definition,17

bits
controlling,103
forcedset/reset,233
m onitoring,230–233

buzzer,61

C
calendar/clock,dedicatedbits,34

canceling,forcedset/reset,235

cassettetapeoperation,246–253
com paringProgram M em orydata,249–250
errorm essages,246
restoringProgram M em orydata,249–250
savingProgram M em orydata,246

channel.See word

clockpulsebits,29

com paringProgram M em orydata,249–250

constants,operands,96

controlbit
definition,16
OutputOFF,28

ControlSystem ,definition,3

controlledsystem ,definition,3

counters
bitsinTC area,39
changingSV,243
conditionswhenreset,117,120
creatingextendedtim ers,118
extended,118
inputtingSV,72
Power-OFF,35
reversiblecounters,119

CPU
DeviceM ountedFlag,36
operationalflow,216–217

CPU indicators,12

CPU Rack,definition,12

cycle,FirstCycleFlag,29

cycletim e,216–220
calculating,220–222
controlling,198
CycleTim eIndicators,36
displayingonProgram m ingConsole,77
errorflag,28
flagforSCAN(18),35

D
data
com parisoninstructions,138–145
converting,18,146–158
decrem enting,159
increm enting,159
m odifying,239
m odifyingbinarydata,241
m odifyinghex/BCD,236
m oving,129–138

dataarea,definition,15

dataareas,structure,16

DataLinktable,transferring,69

dataretention
inAR area,30
inHR area,39
inIR area,18
inLR area,40
inSR area,21
inTC area,39
inTR area,40

decrem enting,159

definers,definition,95

differentiatedinstructions,96
functioncodes,95

digit,m onitoring,230

digitnum bers,17

displays
convertingbetweenhexandASCII,237
I/O Unitdesignations,66
Program m ingConsole,English/Japaneseswitch,60

DM area,saving,restoring,andcom paring,250–253

Index

350

E
ER.See flag,InstructionExecutionError

errorcodes,program m ing,197

errorhistory,dedicatedbits,33

errorm essages,program m ing,198,200

errors
cassettetapeoperations,246
clearingm essages,64
fatal,258
historyarea,37
initialization,257
InstructionExecutionErrorFlag,30
m essagetables,256–260
m essageswheninputtingprogram s,74
non-fatal,258
program m ingindications,256
program m ingm essages,198,200
readingandclearingm essages,256
resetting,198
SR andAR areaflags,260

executioncondition,definition,44

executiontim e,instructions,222–226

ExpansionI/O Rack,definition,12

F
FactoryIntelligentTerm inal.See peripheraldevices

FAL area,28,197

FAL code,FALS-generatingAddress,36

fataloperatingerrors,258

FIT.See peripheraldevices

flag
AR andSR areaerrorflags,260
arithm etic,30
program m ingexam ple,140,142

CPU-m ountingDevice,36
CY
clearing,159
setting,159

CycleTim eError,28
definition,16
FirstCycle,29
I/O VerificationError,28
InstructionExecutionError,30
LinkUnits,36
Low Battery,28
Low Battery(CPU31),35
NetworkParam eter,36
OpticalI/O Error,32
Step,29

floating-pointdecim al,division,169

FloppyDiskInterfaceUnit.See peripheraldevices

forcedset/reset,233
canceling,235–236
ForcedStatusHoldBit,27

functioncodes,95

G- H
GPC.See peripheraldevices

GraphicProgram m ingConsole.See peripheraldevices

Group-2High-densityI/O Units,4
wordallocation,20

hexadecim al,definition,17

High-densityI/O Units.See Group-2High-densityI/O Units;
Units

HostLinkSystem s,errorbitsandflags,23

HR area,39

I
I/O bit
definition,18
lim its,18

I/O num bers,20

I/O points,refreshing,205,206

I/O responsetim es,227

I/O status,m aintaining,27

I/O table
clearing,68
reading,66
registration,63
verification,64
VerificationErrorflag,28

I/O Units.See Units

I/O word
allocation,19
definition,18
lim its,18

increm enting,159

indirectaddressing,96

inputbit
application,18
definition,3

inputdevice,definition,3

inputpoint,definition,3

inputsignal,definition,3

installation,precautions,xiii

instructionset
ADB(50),174
ADD(30),160
ADDL(54),161
AND,46,102
com biningwithOR,47

AND LD,49,103
com biningwithOR LD,51
useinlogicblocks,50

AND NOT,46,102
ANDW (34),180

Index

351

ASC(86),157
ASL(25),125
ASR(26),125
BCD(24),147
BCDL(59),148
BCM P(68),143
BCNT(67),202
BIN(23),146
BINL(58),146
BSET(71),133
CLC(41),159
CM P(20),139
CM PL(60),141
CNT,116
CNTR(12),119
COLL(81),136
COM (29),179
CTW (63),131
DEC(39),159
DIFD(14),87,104–106
usingininterlocks,108
usinginjum ps,110

DIFU(13),87,104–106
usingininterlocks,108
usinginjum ps,110

DIST(80),135
DIV(33),167
DIVL(57),168
DM PX(77),152
DVB(53),179
END(01),48,99,111
executiontim es,222–226
FAL(06),197
FALS(07),197
FDIV(79),169
HTS(65),148
IL(02),84,108–109
ILC(03),84,108–109
INC(38),159
INT(89),185
IORF(97),205
JM E(05),110
JM P(04),110
JM P(04)andJM E(05),86
KEEP(11),106
incontrollingbitstatus,88

ladderinstructions,45
LD,46,102
LD NOT,46,102
LM SG(47),200
M CM P(19),138
M LB(52),178
M LPX(76),150
M OV(21),130
M OVB(82),136
M OVD(83),137
M PRF(61),206
M SG(46),198
M UL(32),165
M ULL(56),166
M VN(22),130
NOP(00),111
NOT,44
operands,42

OR,46,102
com biningwithAND,47

OR LD,49,103
com biningwithAND LD,51
useinlogicblocks,51

OR NOT,46,102
ORW (35),180
OUT,47,104
OUT NOT,47,104
RECV(98),208
RET(93),183
ROL(27),125
ROOT(72),172
ROR(28),126
RW S(17),128
SBB(51),176
SBN(92),183
SBS(91),183
SCAN(18),198
SDEC(78),154
SEND(90),207
SFT(10),121
SFTR(84),123
SLD(74),126
SNXT(09),188
SRD(75),127
STC(40),159
STEP(08),188
STH(66),149
SUB(31),162
SUBL(55),164
SYS(49),201
m aintainingforcedstatus,27
m aintainingI/O status,27

TCM P(85),144
TERM (48),59,200
term inology,42
TIM ,112
TIM H(15),116
VCAL(69),202
W DT(94),205
W SFT(16),128
W TC(64),132
XCHG(73),135
XFER(70),134
XNRW (37),182
XORW (36),181

instructions
designationswheninputting,73
instructionsetlists,100
m nem onicslist,ladder,101

interlocks,108–109
usingself-m aintainingbits,88

interrupts,182
control,185
scheduledinterrupt,186–187
exam ple,186

IR area,18–20

J- L
jum pnum bers,110

jum ps,110–111

Index

352

ladderdiagram
branching,82
IL(02)andILC(03),84
usingTR bits,82

controllingbitstatus
usingDIFU(13)andDIFD(14),87,104–106
usingKEEP(11),106–112
usingOUT andOUT NOT,47

convertingtom nem oniccode,44–56
displayviaGPC,FIT,orLSS,43
instructions
com bining,AND LD andOR LD,51
controllingbitstatus
usingKEEP(11),88
usingOUT andOUT NOT,104

form at,95
notation,95
structure,43
usinglogicblocks,49

ladderdiagram instructions,102–103

LadderSupportSoftware
See also peripheraldevices
capabilities.See peripheraldevices

LEDs.See CPU indicators

leftm ost,definition,17

LinkSystem ,flagsandcontrolbits,23–27

LinkUnits
See also Units
flags,36
PC cycletim e,221

logicblockinstructions,convertingtom nem oniccode,49–56

logicblocks.See ladderdiagram

logicinstructions,179–182

LR area,40

LSS
See also peripheraldevices
capabilities.See peripheraldevices

M
m em oryallclear,62

m em oryareas
clearing,61
definition,15

m em orypartialclear,62

m essages,program m ing,198,200

m nem oniccode,converting,44–56

m odifyingdata,hex/binary,236

m onitoring
binary,240
m onitoring3words,238

m ountingUnits,location,13

N
nesting,subroutines,184

NET LinkSystem ,LR areaapplication.See SYSM AC NET
LinkSystem

non-fataloperatingerrors,258

norm allyclosedcondition,definition,44

NOT,definition,44

O
operandbit,44

operands,95
allowabledesignations,95
requirem ents,95

operatingenvironm ent,precautions,xii

operatingm odes,58

operatingparam eters,setting,201

operation,preparations,60–70

OpticalI/O Unit,Errorflag,32

outputbit
application,18
controlling,viaOutputOFF bit,28
controllingON/OFF tim e,104
controllingstatus,87,88
definition,3

outputdevice,definition,3

outputpoint,definition,3

outputsignal,definition,3

P
password,enteringonProgram m ingConsole,60

PC
configuration,12
definition,3

PC LinkSystem s
errorbitsandflags,25–27
LR areaapplication,40

peripheraldevices,5
FactoryIntelligentTerm inal(FIT),6
FloppyDiskInterfaceUnit,6
GraphicProgram m ingConsole(GPC),5
LadderSupportSoftware(LSS),5
capabilities,8

PrinterInterfaceUnit,6
Program m ingConsole,5,56–60
PROM W riter,6

powersupply,Power-OFF Counter,35

precautions,xi
applications,xiii
general,xii
operatingenvironm ent,xii
safety,xii

Index

353

presentvalue.See PV

PrinterInterfaceUnit.See peripheraldevices

program execution,92

Program M em ory,40
backupandrestore,249–250
settingaddressandreadingcontent,71–72
structure,45

program m ing
backupontocassettetape,246–253
checksforsyntax,75–77
enteringandediting,72
exam ple,usingshiftregister,122
inputting,m odifyingandchecking,71–87
insertinganddeletinginstructions,79–81
jum ps,86
precautions,91
preparingdataindataareas,133
searching,78–79
settingandreadingfrom m em oryaddress,71
sim plificationwithdifferentiatedinstructions,106
writing,42

Program m ingConsole,56–60
See also peripheraldevices

PROM W riter.See peripheraldevices

PV
accessingviaPC area,39
CNTR(12),120
tim ersandcounters,112

R
Racks,types,12

Rem oteI/O System s,errorbitsandflags,22

responsetim es,I/O,227–228

rightm ost,definition,17

S
safetyprecautions.See precautions

self-m aintainingbits,usingKEEP(11),106

setvalue.See SV

seven-segm entdisplays,convertingdata,154

shiftregisters,121–129
controllingindividualbits,122

SpecialI/O Units.See Units

SR area,21–30

statusindicators.See CPU indicators

stepexecution,Stepflag,29

stepinstructions,188–197

subroutinenum ber,183

subroutines,182–187

SV
accessingviaTC area,39
changing,243
CNTR(12),120
tim ersandcounters,112

SYSM AC LINK System
ActiveNodeFlags,33
com m unicationscom pletioncode,24
datalinksettings,32
datalinkstatus,24
flags,23
instructions,207
LR areaapplication,40
NetworkParam eterFlag,36
routingtableandm onitortim er,39
servicetim e,34

SYSM AC NET LinkSystem
datalinkstatus,24
DataLinkTabletransferring,69
instructions,207
servicetim e,34

T
TC area,39–40

TC num bers,39,111

TERM INAL m ode,59
KeyBits,35

tim ers
bitsinTC area,39
changingSV,243
conditionswhenreset,112,116
exam pleusingCM P(20),140
extendedtim ers,113
flickerbits,115
inputtingSV,72
ON/OFF delays,113
one-shotbits,114

TR area,40

TR bits,useinbranching,82

U
Units
definition,3
High-densityI/O Units,definition,4
I/O Units,definition,3
LinkUnits,definition,4
SpecialI/O Units,definition,4

W
watchdogtim er,219
extending,205

wordbit,definition,16

workword,definition,16

355

Revision History
A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W217-E1-2

Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 July 1992 Original production.

1A November 1992 Page 129: Layout of diagram corrected.

Pages 266 and 268: Products added to standard-models tables.

1B January 1994 Multipoint I/O changed to High-density I/O throughout the manual. Scan time
changed to cycle time throughout the manual.
Page 7: Available manuals list updated.

Page 8-10: LSS operation capabilities added.

Page 24: “node numbers in table body” corrected to “Registration number in
the data link table” in the SYSMAC NET Link Systems table.

Page 33: Note added to Set Bit procedure.

Page 201 and 202: The description for SET SYSTEM -- SYS(49) has been
rewritten.

Page 218: Time required for Host Link Unit servicing has been clarified to 8 ms
per Unit max.

Page 219: Units added to the Special I/O Unit Refresh table.

Page 248: Note added.

Pages 263 to 268: Standard Models lists has been updated.
1C June 1994 Address change.

1D January 1995 Page 117: AND instruction for TIM 002 in Example 5 corrected to AND NOT.

2 March 2000 Precautions section added. In addition, the following changes were made.

Page 7: Minor changes made to table.

Page 31: Corrections made to first table.

Page 99: Note added.

Page 114: Information added to “Limitations.”

Page 263: Change made to “CPU error” item.

Page 275: Model numbers changed in last table.

Page 323: Information added to introduction.

Cat. No. W217-E1-2 Note: Specifications subject to change without notice. Printed in Japan
0300-ntlpM

Authorized Distributor:

