

Machine Automation Controller NJ-series

EtherCAT Connection Guide

OMRON Corporation

GRT1-ECT SmartSlice

Network
Connection
Guide

About Intellectual Property Right and Trademarks Microsoft product screen shots reprinted with permission from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the USA and other countries. EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. Company names and product names in this document are the trademarks or registered trademarks of their respective companies.

Table of Contents

1. Rel	ated Manuals	1
2. Ter	ms and Definition	2
3. Rei	marks	3
4. Ov	erview	5
5. Ap	plicable Devices and Support Software	6
5.1.	Applicable Devices	6
5.2.	Device Configuration	7
6. Eth	erCAT Settings	9
6.1.	EtherCAT Communications Settings	9
6.2.	Assignment of EtherCAT Communications	9
7. Co	nnection Procedure	11
7.1.	Work Flow	11
7.2.	Setting Up the SmartSlice	12
7.3.	Setting Up the Controller	16
7.4.	Connection Status Check	28
8. Init	ialization Method	33
8.1.	Controller	33
9. Rev	vision History	34

1. Related Manuals

The table below lists the manuals related to this document.

To ensure system safety, make sure to always read and heed the information provided in all Safety Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for each device which is used in the system.

Cat. No.	Model	Manual name
W500	NJ501-[][][][]	NJ-series CPU Unit Hardware User's Manual
	NJ301-[][][][]	
W501	NJ501-[][][][]	NJ-series CPU Unit Software User's Manual
	NJ301-[][][][]	
W505	NJ501-[][][][]	NJ-series CPU Unit Built-in EtherCAT Port User's
	NJ301-[][][][]	Manual
W504	SYSMAC-SE2[][][]	Sysmac Studio Version 1 Operation Manual
W455	GRT1 series	SmartSlice GRT1 Series Slice I/O Units Operation
		Manual
W18E	GRT1-ECT	GRT1-series
		EtherCAT Communication Unit Operation Manual

2. Terms and Definition

Terms	Explanation and Definition
PDO	This method is used for cyclic data exchange between the master unit
Communications	and the slave units
(Communications	PDO data (i.e., I/O data that is mapped to PDOs) that is allocated in
using Process Data	advance is refreshed periodically each EtherCAT process data
Objects)	communications cycle (i.e., the period of primary periodic task).
	The NJ-series Machine Automation Controller uses process data
	communications for commands to refresh I/O data in a fixed control
	period, including I/O data for EtherCAT Slave Units, and the position
	control data for Servomotors.
	It is accessed from the NJ-series Machine Automation Controller in the
	following ways.
	•With device variables for EtherCAT slave I/O
	•With Axis Variables for Servo Drive and encoder input slaves to which
	assigned as an axis.
SDO	This method is used to read and write the specified slave unit data from
Communications	the master unit when required.
(Communications	The NJ-series Machine Automation Controller uses SDO
using Service Data	communications for commands to read and write data, such as for
Objects)	parameter transfers, at specified times.
	The NJ-series Machine Automation Controller can read/write the
	specified slave data (parameters and error information, etc.) with the
	EC_CoESDORead (Read CoE SDO) instruction or the
	EC_CoESDOWrite (Write CoE SDO) instruction.
Slave Unit	There are various types of slaves such as Servo Drives that handle
	position data and I/O terminals that control the bit signals.
	The slave receives output data sent from the master, and transmits
	input data to the master.
Node address	An address to identify the unit connected to the EtherCAT.
ESI file	The ESI files contain information unique to the EtherCAT slaves in XML
(EtherCAT Slave	format.
Information file)	Install an ESI file into the Sysmac Studio, to allocate slave process data
	and make other settings.

3. Remarks

- (1) Understand the specifications of devices used in the system. Allow some margin for ratings and performance. Provide safety measures, such as installing safety circuit in order to ensure safety and minimize the risks of abnormal operation.
- (2) To ensure system safety, always read and heed the information provided in all Safety Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for each device used in the system.
- (3) The users are encouraged to confirm the standards and regulations that the system must conform to.
- (4) It is prohibited to copy, to reproduce, and to distribute a part of or whole of this document without the permission of OMRON Corporation.
- (5) This document provides the latest information as of December 2012. The information contained in this document is subject to change for improvement without notice.

The following notation is used in this document.

WARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury. Additionally, there may be severe property damage.

Caution

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury, or property damage.

Precautions for Safe Use

Indicates precautions on what to do and what not to do to ensure using the product safely.

Precautions for Correct Use

Indicates precautions on what to do and what not to do to ensure proper operation and performance.

Additional Information

Provides useful information.

Additional information to increase understanding or make operation easier.

Symbols

The circle and slash symbol indicates operations that you must not do. The specific operation is shown in the circle and explained in text. This example indicates prohibiting disassembly.

The triangle symbol indicates precautions (including warnings). The specific operation is shown in the triangle and explained in text. This example indicates a precaution for electric shock.

The triangle symbol indicates precautions (including warnings). The specific operation is shown in the triangle and explained in text. This example indicates a general precaution.

The filled circle symbol indicates operations that you must do.

The specific operation is shown in the circle and explained in text.

This example shows a general precaution for something that you must do.

4. Overview

This document describes the procedure for connecting the SmartSlice (GRT1-ECT) of OMRON Corporation (hereinafter referred to as OMRON) to NJ-series Machine Automation Controller (hereinafter referred to as Controller) on the EtherCAT and provides the procedure for checking their connection.

Refer to Section 7 Connection Procedure to understand the setting method and key points to connect the devices via EtherCAT.

5. Applicable Devices and Support Software

5.1. Applicable Devices

The applicable devices are give below.

Manufacturer	Name	Model	Version
OMRON	NJ series CPU Unit	NJ501-[][][][NJ301-[][][]	
OMRON	SmartSlice EtherCAT	GRT1-ECT	
	Communications Unit		
OMRON	SmartSlice Slice I/O Unit		
	Digital Input Unit	GRT1-ID[](-1)	
		GRT1-IA4-[]	
	Digital Output Unit	GRT1-OD[](-1)	Versions
		GRT1-ROS2	listed in
	Analog Input Unit	GRT1-AD2	Section 5.2
	Analog Output Unit	GRT1-DA2[]	and higher
	Temperature Input Unit	GRT1-TS2P(K)	versions
	Counter Unit	GRT1-CT1(-1)	
	Positioning Unit	GRT1-CP1-L	
	Turnback Unit	GRT1-TBR	
		GRT1-TBL	
	I/O Power Feed Unit	GRT1-PD2[]	
		GRT1-PD8(-1)	
	I/O Power Connection Unit	GRT1-PC8(-1)	

Additional Information

As applicable devices above, the devices listed in Section 5.2. are actually used in this document to check the connection. When using devices not listed in Section 5.2, check the connection by referring to the procedure in this document.

Additional Information

This document describes the procedure to establish the network connection. It does not provide information about operation, installation nor wiring method of each device. For details on the products (other than communication connection procedures) listed above, refer to the manuals for the corresponding products or contact your OMRON representative.

Additional Information

You can connect devices with the versions listed in Section 5.2 or higher versions.

For devices whose versions are not listed in Section 5.2, versions are not managed or there is no version restriction.

To connect a device whose model number is not listed in Section 5.2, use the same version of the device that is listed.

5.2. Device Configuration

The hardware components to reproduce the connection procedure in this document are as follows.

Manufacturer	Name	Model	Version
OMRON	CPU Unit	NJ501-1500	Ver.1.03
	(Built-in EtherCAT port)		
OMRON	Power Supply Unit	NJ1W-PA3001	
OMRON	Sysmac Studio	SYSMAC-SE2[][][]	Ver.1.04
_	Personal computer (OS:Windows7)	-	
-	USB cable	-	
	(USB 2.0 type B connector)		
OMRON	Ethernet cable (with industrial	XS5W-T421-[]M[]-K	
	Ethernet connector)		
OMRON	SmartSlice EtherCAT	GRT1-ECT	Ver.2.1
	Communication Unit		
OMRON	SmartSlice Digital Input Unit	GRT1-ID8	
		GRT1-ID4	
OMRON	SmartSlice Analog Input Unit	GRT1-AD2	
OMRON	SmartSlice Digital Output Unit	GRT1-OD4	
OMRON	SmartSlice Analog Output Unit	GRT1-DA2V	
OMRON	SmartSlice End Unit	GRT1-END	

Precautions for Correct Use

The connection line of EtherCAT communication cannot be shared with other networks, such as Ethernet or EtherNet/IP.

The switching hub for Ethernet cannot be used for EtherCAT.

Please use the cable of Category 5 or higher, double-shielded with aluminum tape and braided shielding and the shielded connector of Category 5 or higher.

Connect the cable shield to the connector hood at both ends of the cable.

Precautions for Correct Use

Update the Sysmac Studio to the version specified in this section or higher version using the auto update function.

If a version not specified in this section is used, the procedures described in Section 7 and subsequent sections may not be applicable. In that case, use the equivalent procedures described in the *Sysmac Studio Version 1 Operation Manual* (Cat.No. W504).

Additional Information

For information on the specifications of the Ethernet cable and network wring, refer to Section 4 EtherCAT Network Wiring in the NJ-series CPU Unit Built-in EtherCAT Port User's Manual (Cat. No. W505).

Additional Information

The system configuration in this document uses USB for the connection between the personal computer and the Controller. For information on how to install a USB driver, refer to A-1 Driver Installation for Direct USB Cable Connection of the Sysmac Studio Version 1 Operation Manual (Cat.No. W504).

6. EtherCAT Settings

This section provides specifications such as communications parameters and variable names that are defined in this document.

Hereinafter, the SmartSlice is referred to as the "destination device" or "Slave Unit" in some descriptions.

6.1. EtherCAT Communications Settings

The setting required for EtherCAT communications is as follows.

	GRT1-ECT
Node address	01

6.2. Assignment of EtherCAT Communications

The following table shows the arrangement of the SmartSlice I/O Units.

Unit No.		#1	#2	#3	#4	#5	
Unit Type	EtherCAT Unit	Digital	Digital	Analog	Digital	Analog	End
		Input	Input	Input	Output	Output	Unit
		Unit	Unit	Unit	Unit	Unit	
Model	GRT1-ECT	GRT1-I	GRT1-I	GRT1-	GRT1-	GRT1-	GRT1-
		D8	D4	AD2	OD4	DA2V	END

I/O range setting of the Analog I/O Units

	GRT1-AD2	GRT1-DA2V
I/O range	0 to 5V (Default)	0 to 5V (Default)
I/O range setting method	ON: Set with the DIP switch.	ON: Set with the DIP switch.

The device variables of the destination device are allocated to Controller's device variables. The relationship between the device data and the device variables is shown below.

■Output area (Controller → Destination device)

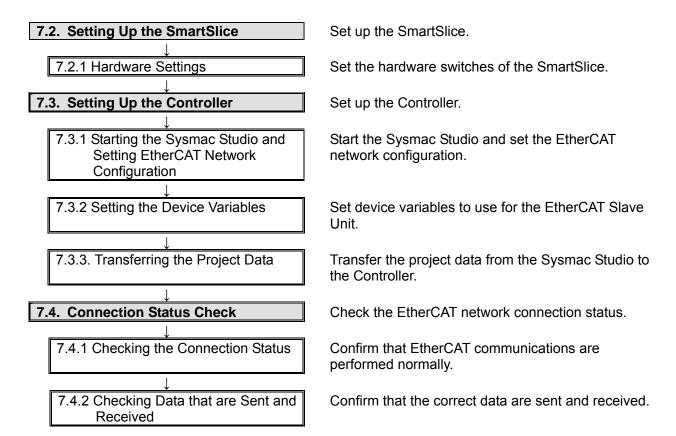
	*	
Destination device data	Device variable name	Data type
#4 GRT1-OD4 Output 0	E001_DO001	BOOL
#4 GRT1-OD4 Output 1	E001_DO002	BOOL
#4 GRT1-OD4 Output 2	E001_DO003	BOOL
#4 GRT1-OD4 Output 3	E001_DO004	BOOL
#5 GRT1-DA2V Output 0	E001_AO001	INT
#5 GRT1-DA2V Output 1	E001_AO002	INT

■Input area (Controller ← Destination device)

Destination device data	Global variable name	Data type
#1 GRT1-ID8 Input 0	E001_DI001	BOOL
#1 GRT1-ID8 Input 1	E001_DI002	BOOL
#1 GRT1-ID8 Input 2	E001_DI003	BOOL
#1 GRT1-ID8 Input 3	E001_DI004	BOOL
#1 GRT1-ID8 Input 4	E001_DI005	BOOL
#1 GRT1-ID8 Input 5	E001_DI006	BOOL
#1 GRT1-ID8 Input 6	E001_DI007	BOOL
#1 GRT1-ID8 Input 7	E001_DI008	BOOL
#2 GRT1-ID4 Input 0	E001_DI009	BOOL
#2 GRT1-ID4 Input 1	E001_DI010	BOOL
#2 GRT1-ID4 Input 2	E001_DI011	BOOL
#2 GRT1-ID4 Input 3	E001_DI012	BOOL
#3 GRT1-AD2 Input 0	E001_Al001	INT
#3 GRT1-AD2 Input 1	E001_AI002	INT

lacktriangle Details of the status allocation (Controller \leftarrow Destination device)

Des	stination device data	Global variable name	Data type	
Cor	mmunications Unit status	E001_Communication_Unit_Status	WORD	
	Slice I/O Bus	E001_Bus_Communication_Error	BOOL	
	communication error flag			
	Slice I/O Unit warning	E001_Unit_Warning	BOOL	
	flag			
	Slice I/O Unit alarm flag	E001_Unit_Alarm	BOOL	
	Unit maintenance flag	E001_Unit_Maintenance	BOOL	
	Automatic restore	E001 Postoro Monitor	BOOL	
	monitor flag	E001_Restore_Monitor	BOOL	
	Communication Unit	E001_Unit_Error	BOOL	
	error flag	=001_01111_=1101	BOOL	
	I/O refreshing flag	E001_Refreshing	BOOL	


7. Connection Procedure

This section describes the procedure for connecting the Controller to the SmartSlice via EtherCAT.

This document explains the procedures for setting up the Controller and SmartSlice from the factory default setting. For the device initialization, refer to Section 8 Initialization Method.

7.1. Work Flow

The following is the procedure for connecting to the EtherCAT.

7.2. Setting Up the SmartSlice

Set up the SmartSlice.

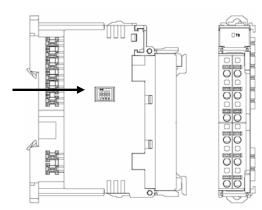
7.2.1. Hardware Setting

Set the hardware switches of the SmartSlice.

Precautions for Correct Use

Make sure that the power supply is OFF when you perform the settings.

- 1 Make sure that the power supply to the SmartSlice is turned OFF.
 - *If the power supply is turned ON, settings may not be applicable as described in the following procedure.
- 2 Refer to the right figure and check the hardware switches located on the front panel of the SmartSlice EtherCAT Communication Unit.


No.	Name	Function
(1)	EtherCAT connector IN port	
(2)	Link/Activity LED IN port	
(3)	Shielding Terminal	
(4)	EtherCAT connector OUT port	
(5)	Link/Activity LED OUT port	

7. Connection Procedure

		(6)	Rotary switches	Set the Unit's address of the EtherCAT Slave. Set a decimal node address between 0 and 99.
		(7)	Indicators	Refer to 7.4.1. Checking the Connection Status for details.
		(8)	DIP Switch	Sets the I/O allocation method and registers the I/O Unit configuration information.
				SW1 (REGS):Create/enable registration table. SW2 (NC):Not used, set to OFF SW3 (ADR):Automatic restore SW4 (BACK):Backup trigger
		(9)	Unit power supply terminals	Connect the power supply for the Unit's internal circuits and the connected SmartSlice I/O Units' internal circuits.
		(10)	I/O power supply terminals	Connect the power supply for the connected SmartSlice I/O Units' external I/O.
3	Set the rotary switches (node address setting switches) to 01.	O AE	mron GRT1-ECT	(2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
4	Confirm that all DIP switch pins are set to OFF (default).		1 REGS 2 NC 3 ADR 4 BACK Pin 3	ON:Registered table is enabled OFF:Registered table is disabled OFF to ON:Register I/O unit table ON to OFF:Clear registered I/O unit table OFF: Not used. OFF: Not used. OFF: Automatic restore disabled. OFF to ON:When the SmartSlice I/O Units are replaced, the parameter data that was backed up with the BACK dipswitch is automatically restored. ON to OFF to ON in 3 s: Parameter data of all connected SmartSlice I/O Units is backed up.

5 Set the DIP switch pins of the Analog I/O Unit.

DIP Switch Used to set Input/output range.

GRT1-AD2

Pins 1 to 3 :OFF (Default)

Pin 4 :ON

Pin No.	Setting	Specifications	
1	Input Terminal: Input range	Default setting:All pins OFF	
2	setting for Inputs 0 and 1.		
3	1		
4	Input range setting method	OFF: Set using Setting Tool. ON: Set using DIP switch. (The DIP switch settings are disabled when this pin is OFF i.e., when the Setting Tool is used.)	
		Note Default setting:OFF	

GRT1-DA2V

Pin 1 to 2 :OFF (Default)

Pin 3 :OFF (Fixed)

Pin 4 :ON

Pin No.	Setting	Specifications
1	Set the output range for	Default setting:All pins OFF
2	Outputs 0 and 1.	
3	Reserved	Fixed at OFF.
4		OFF: Set using Setting Tool.
	method.	ON: Set using DIP switch.
		Default setting:OFF

6 Mount the Units from the left in the following order.

GRT1-ECT

GRT1-ID8

GRT1-ID4

GRT1-AD2

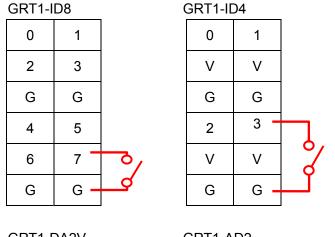
GRT1-OD4

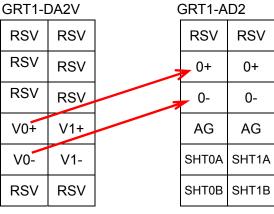
GRT1-DA2V

GRT1-END

*For information on how to mount Units, refer to 3-1-1 Connecting the Communications Unit and Slice I/O Units in the SmartSlice GRT1 Series Slice I/O Units Operation Manual (Cat. No. W455).

7 Connect the power cable to the Unit power supply terminals and I/O power supply terminals, and connect the Ethernet cable to the EtherCAT connector IN port.


8 Wire I/O for 7.4.2. Checking Data That Are Sent and Received.

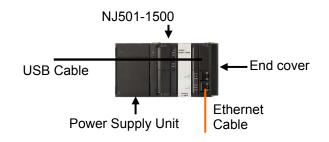

Connect a switch between input terminal 7 and G of GRT1-ID8.

Connect a switch between input terminal 3 and G of GRT1-ID4.

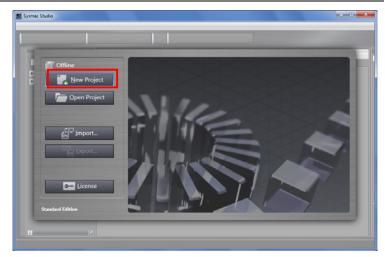
Refer to the figure on the right and connect DA output 0 of GRT1-DA2V to AD input 0 of GRT1-AD2.

*Wiring to the terminal block is necessary for 7.4.2. Checking Data That Are Sent and Received. Please note that the wiring is not necessary to perform EtherCAT communications.

7.3. Setting Up the Controller


Set up the Controller.

7.3.1. Starting the Sysmac Studio and Setting the EtherCAT Network Configuration

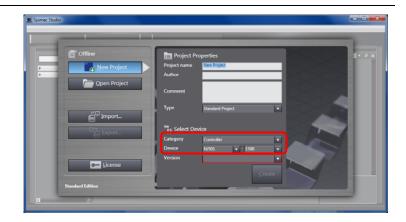

Start the Sysmac Studio and set the EtherCAT network configuration.

Install the software and USB driver in the personal computer beforehand.

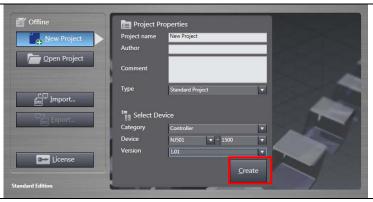
1 Connect the Ethernet cable to the built-in EtherCAT port (PORT2) of the Controller, and connect the USB cable to the peripheral (USB) port. As shown in 5.2. Device Configuration, connect the personal computer, SmartSlice to the Controller. Turn ON the power supply to the Controller.

- 2 Start the Sysmac Studio. Click the **New Project** Button.
 - *If a dialog box is displayed at start confirming the access right, select an option to start.

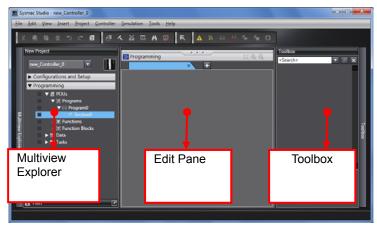
The Project Properties Dialog Box is displayed.

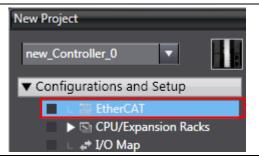

*In this document, New Project is set as the project name.

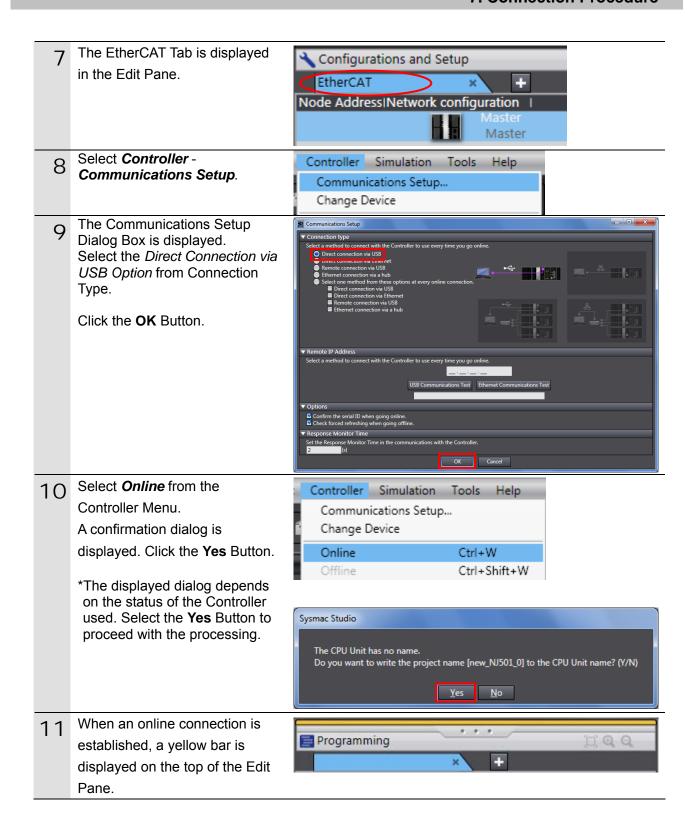
Confirm that the Category and Device are correctly set in the Select Device Field.


Select 1.03 from the Version pull-down menu.

*Although version 1.03 is selected in this document, select the version you use.

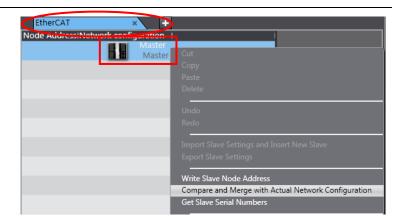

4 Click the **Create** Button.

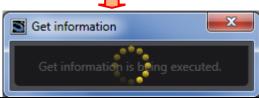




The New Project is displayed.
The left pane is called Multiview
Explorer, the right pane is called
Toolbox and the middle pane is
called Edit Pane.

Oouble-click EtherCAT under Configurations and Setup in the Multiview Explorer.

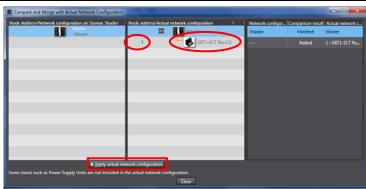



Additional Information

For details on the online connections to a Controller, refer to Section 5 Going Online with a Controller in the Sysmac Studio Version 1 Operation Manual (Cat. No. W504).

Right-click **Master** on the EtherCAT Tab Page of the Edit Pane, and select the **Compare** and **Merge with Actual Network Configuration**.

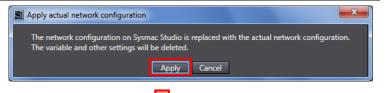
A screen is displayed stating "Get information is being executed".

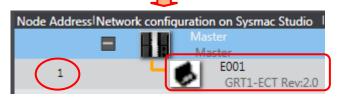


The Compare and Merge with Actual Network Configuration Pane is displayed.

Node address 1 and GRT1-FC

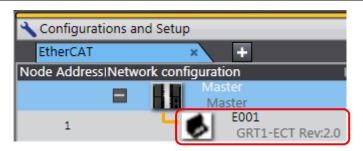
Node address 1 and GRT1-ECT Rev:2.0 are added to the actual network configuration of the comparison result.


Click the **Apply actual network configuration** Button.



A confirmation dialog box is displayed. Click the **Apply** Button.

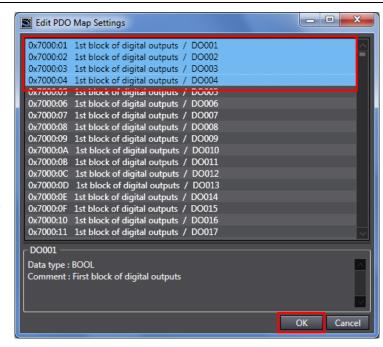
Node address 1 and E001 GRT1-ECT Rev:2.0 are added to the network configuration of the Sysmac Studio.


Click the Close Button.

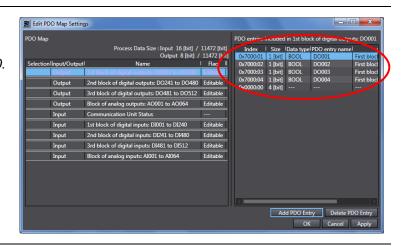
Close

Node address 1 and E001
GRT1-ECT Rev:2.0 are added to the EtherCAT Tab Page in the Edit Pane.

7.3.2. Setting the Device Variables

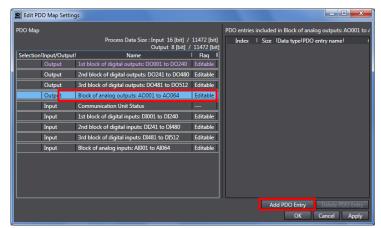

Set the device variables used for the EtherCAT Slave Unit.

Select Offline from the Controller Simulation Tools Help Controller Menu. Communications Setup... Change Device Ctrl+W Online Offline Ctrl+Shift+W The yellow bar on the top of the Edit Pane disappears. Configurations and Setup Select E001 from the EtherCAT Tab Page of the Edit Pane. = [] The PDO map settings are displayed on the right side of the Pane. The Edit PDO Map Settings Edit PDO Map Settings Window is displayed. PDO entries included in 1st block of dig Set digital outputs. Select Output 1st block of digital 1st block of digital inputs: DI001 to DI240 2nd block of digital inputs: DI241 to DI480 outputs: DO001 to DO240 and 3rd block of digital inputs: DI481 to DI512 click the Add PDO Entry Button. Add PDO Entry A Register the output points of the connected SmartSlice Digital Output Unit.


In this document, unit number 4 is allocated to the GRT1-OD4 Digital Output Unit. Thus, there are 4 output points. Register *DO001* to *DO004*.

Select items from 0x7000:01 1st block of digital outputs / D0001 to 0x7000:04 1st block of digital outputs / D0004, and click the **OK** Button.

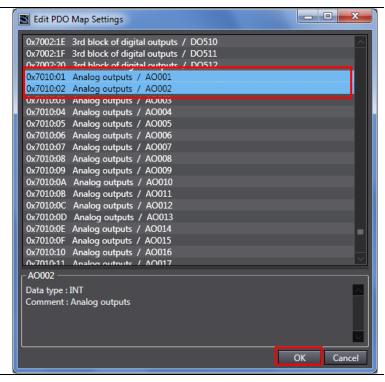
*To select multiple items, select 0x7000:01 1st block of digital outputs / D0001, hold down the Shift Key, then click 0x7000:04 1st block of digital outputs / D0004.

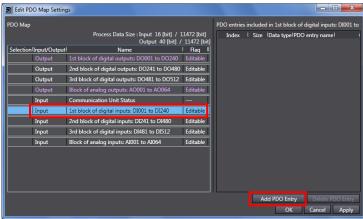


5 Confirm that DO001 to DO004 are registered in the PDO entries included in 1st block of digital outputs DO001 to DO240.

6 Next, set the analog outputs.

Select Output Block of analog outputs:AO001 to AO64 and click the Add PDO Entry Button.


7 Register the output points of the connected SmartSlice Analog Output Unit.


In this document, unit number 5 is allocated to the GRT1-DA2V Analog Output Unit. Thus, there are 2 output points. Register *AO001* to *AO002*.

All output entries including digital and analog outputs are displayed. Scroll the screen and select 0x7010:01 Analog outputs / A0001 and 0x7010:02 Analog outputs / A0002, and click the **OK** Button.

O Set the digital input.

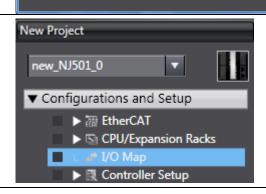
Select *Input Block of digital inputs:DI001* to *DI240* and click the **Add PDO Entry**.

0x6020:02 16 [bi INT AI002

Add PDO Entry Delete PDO Entry

Register the input points of the connected SmartSlice Digital Input Unit.

In this document, unit number 1 is allocated to the GRT1-ID8 Digital Input Unit and unit number 2 is allocated to GRT1-ID4 Digital Input Unit. Thus, there is a total of 12 input points. Register DI001 to DI012. Select the entries from 0x6010:01 1st block of digital inputs / DI001 to 0x6010:0C 1st block of digital inputs / DI012, and click the **OK** Button.


_ D X Edit PDO Map Settings 0x6010:01 1st block of digital inputs / 0x6010:02 1st block of digital inputs / DI002 0x6010:03 1st block of digital inputs / 0x6010:04 1st block of digital inputs / DI004 0x6010:05 1st block of digital inputs / 0x6010:06 1st block of digital inputs / 0x6010:07 1st block of digital inputs / 0x6010:08 1st block of digital inputs / DI008 0x6010:09 1st block of digital inputs / DI009 0x6010:0A 1st block of digital inputs / DI010 0x6010:0B 1st block of digital inputs / DI011 0x6010:0C 1st block of digital inputs / DI012 0x6010:0D 1st block of digital inputs / DI013 0x6010:0E 1st block of digital inputs / DI014 0x6010:0F 1st block of digital inputs / 0x6010:10 1st block of digital inputs / DI016 0x6010:11 1st block of digital inputs / DI017 0x6010:12 1st block of digital inputs / DI018 0x6010:13 1st block of digital inputs / DI019 0v6010:14 1st block of digital inputs / DI020 DI001 Data type: BOOL Comment: First block of digital inputs

10 Set analog inputs in the same way.

In Input Block of analog inputs:AI001 to AI64, register 0x6020:01 Analog inputs / AI001 and 0x6020:02 Analog inputs / AI002.

Confirm that all inputs are registered and click the **OK** Button.

Double-click **I/O Map** under **Configurations and Setup** on the Multiview Explorer.

3rd block of digital inputs: DI481 to DI512 Edita

Edit PDO Map Setting:

The I/O Map Tab is displayed on 12 the Edit Pane. Confirm that Node1 and the Slave Unit is displayed in columns under Position. *To assign your own variable name for the slave, click the corresponding area and enter a name. Right-click **Node1** and select 13 Node1 Create Device Variable. Сору Search Expand/Collapse All Create Device Variable The Variable names and 14 Variable Types are automatically set.

Additional Information

The device variable names are created automatically from a combination of the device names and the I/O port names.

For slave units, the default device names start with an "E" followed by a sequential number starting from "001".

Additional Information

Although the device variable names are automatically created by slaves in the example above, they can be automatically created by I/O ports.

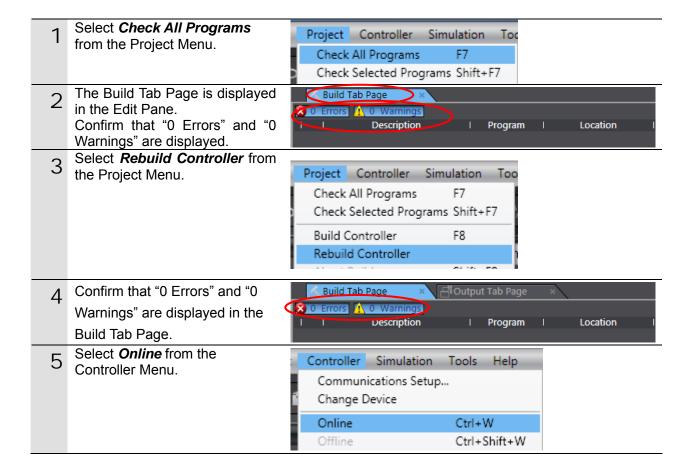
Also, you can set any device variables.

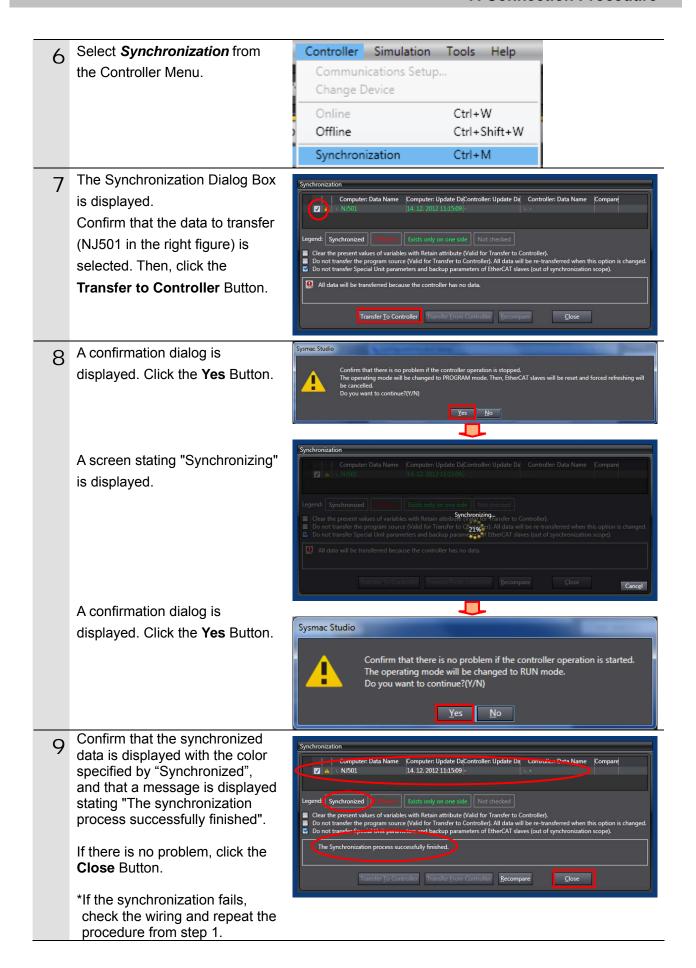
7.3.3. Transferring Project Data

Transfer the project data from the Sysmac Studio to the Controller.

⚠ WARNING

Always confirm safety at the destination node before you transfer a user program, configuration data, setup data, device variables, or values in memory used for CJ-series Units from the Sysmac Studio.




The devices or machines may perform unexpected operation regardless of the operating mode of the CPU Unit.

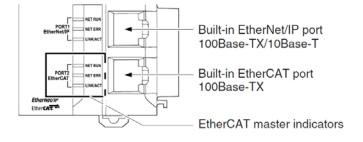
∕ Caution

After you transfer the user program, the CPU Unit is restarted and communications with the EtherCAT slaves are cut off for a maximum of 45 seconds. During that period, the slave outputs behave according to the slave settings. Before you transfer the user program, confirm that the system will not be adversely affected.

7.4. Connection Status Check

Check the EtherCAT network connection status.

7.4.1. Checking the Connection Status


Confirm that EtherCAT communications are performed normally.

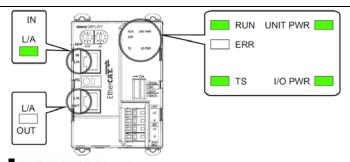
1 Check the LED indicators on the Controller to confirm that the EtherCAT communications are performed normally.

LED indicators in normal status.

[NET RUN]: Lit green [NET ERR]: Not lit

[LINK/ACT]: Flashing yellow

Label	Name	Color	Status	Meaning	
			Lit	EtherCAT communications are in progress. I/O data is being input and output.	
F# CAT	RUN		Flashing	EtherCAT communications are established. Communications is in one of the following states. Only message communications is function-	
EtherCAT NET RUN		Green		Only message communications and I/O data input operations are functioning.	
			Not lit	EtherCAT communications are stopped.	
				Power is OFF or the Unit is being reset. There is a MAC address error, communications controller error, or other error.	
	ERROR		+	Lit	There is an unrecoverable error, such as a
EtherCAT		DR Red	Lit	hardware error or an exception.	
NET ERR			Flashing	There is a recoverable error.	
			Not lit	There is no error.	
			Lit	The link is established.	
EtherCAT	AT		Flashing	A link is established and data is being sent and received.	
LINK/ACT	Link/Activity	Yellow		The indicator flashes whenever data is sent or received.	
			Not lit	The link is not established.	


2 Check the LED indicators of the SmartSlice.

LED indicators in normal status.

[UNIT PWR]: Lit green [I/O PWR]: Lit green

[RUN]: Lit green [ERR]: Not lit [L/A]: Flashing [TS]: Lit green

The LED indicators flash at the same timing as those of the Controller.

[UNIT PWR] indicator

Indicates the unit power supply state.

Color	State	Contents
0	OFF	Unit power OFF state
Green	ON	The unit power (24 VDC) is supplied to the Slave.

[I/O PWR] indicator

Indicates the I/O power supply state.

Color	State	Unit power OFF state	
	OFF	Unit power OFF state	
Green	ON	The unit power (24 VDC) is supplied to the Slave.	

[RUN] indicator

Indicates the operation state.

Color	Color State Contents		
	OFF	Init state	
0	Blinking	Pre-Operational state	
Green	Single flash	Safe-Operational state	
	ON	Operational state	

For details on each state, refer to "2-5 Communication State Transitions" in Page 2 - 7

[ERR] indicator

It indicates the information of an error.

Color	State	Contents	
	OFF	No error	
	Blinking	Communication setting error	
Red	Single flash	Synchronization error or communication data error	
Red	Double flash	Application WDT timeout	
	Flickering	Boot error	
	ON	PDI WDT timeout	

[L/A] indicators

Indicates the communication state of the input side (IN) and output side (OUT)

Color	State	Contents	
	OFF	Link not established in physical layer	
Green	Flickering	In operation after establishing link	
	ON	Link established in physical layer	

[TS] indicator

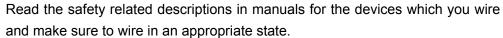
Indicates the status of the SmartSlice I/O system.

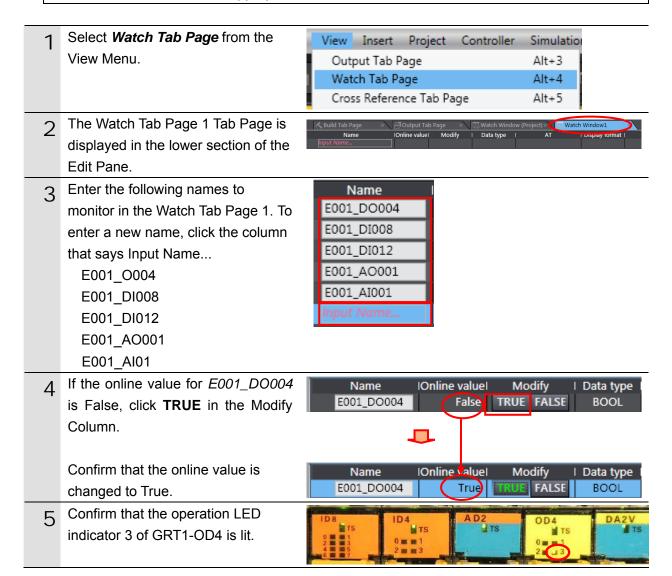
Color	State	Contents
N/A	OFF	No power supply Communication with SmartSlice I/O Unit has not started Overcurrent detected
	Flashing (every second)	SmartSlice I/O Unit added to the system
Green	Flashing (every 0.5 second)	Backup/Restore function operating: Restoring settings to SmartSlice I/O Unit, backup function operating Downloading SmartSlice I/O Unit settings
	ON	Communication with SmartSlice I/O Unit established
Red	Flashing	Non-fatal communication error occurred. Communication timeout Verification error occurred with registered table Different model unit detected after SmartSlice I/O Unit replacement
	ON	Fatal communication error occurred.
	Lit for 2 s	Failure occurred while restoring settings to I/O unit or downloading I/O unit settings

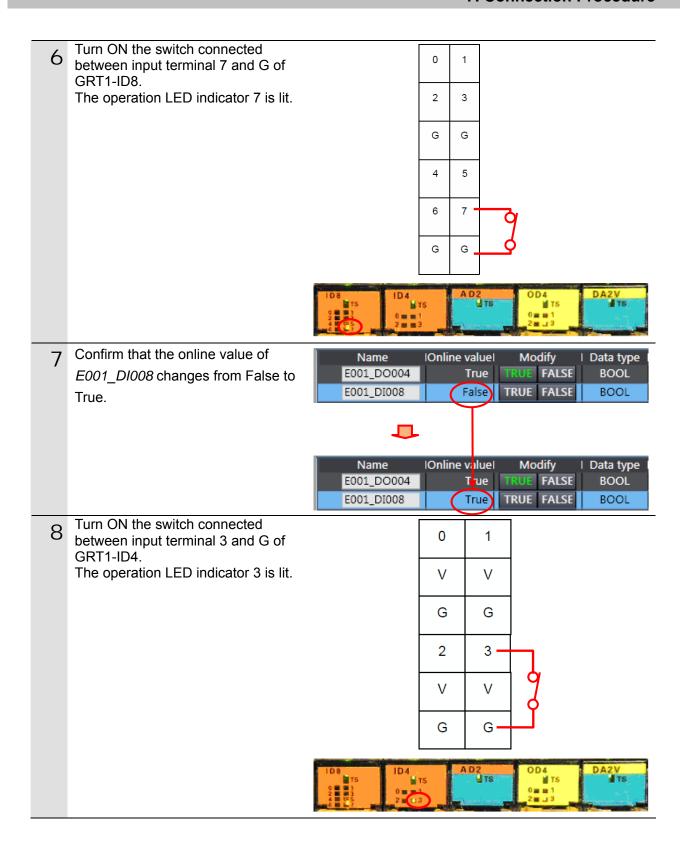
7.4.2. Checking Data That Are Sent and Received

Confirm that the correct data are sent and received.

⚠ WARNING


Always confirm safety at the destination node before you transfer a user program, configuration data, setup data, device variables, or values in memory used for CJ-series Units from the Sysmac Studio.


The devices or machines may perform unexpected operation regardless of the operating mode of the CPU Unit.


Caution

Always turn OFF the power supply to the devices and confirm safety before I/O wiring.

Onfirm that the online value of E001_DI0012 changes from False to True.

Name	IOnline valueI	Modify	l Data type I
E001_DO004	True	TRUE FALSE	BOOL
E001_DI008	True	TRUE FALSE	BOOL
E001_DI012	True	TRUE FALSE	BOOL

10 Enter 3000 in the Modify Column of *E001_A0001*.

The online value of *E001_A0001* changes to 3000.

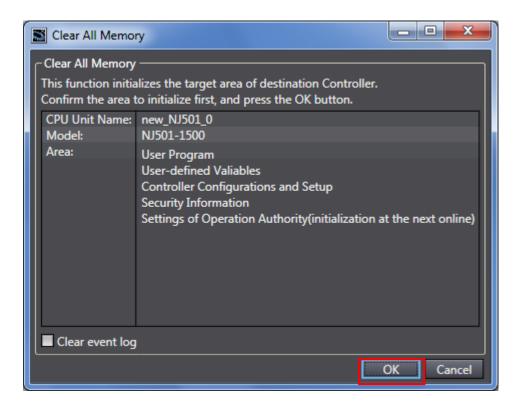
[E001_AO001]: GRT1-DA2V analog output 0

Confirm that 3000 or a value close to it is set as the online value of *E001_Al001*. (Here, 2999 is set.) [E001_Al001]:

GRT1-AD2 analog input 0

Name	IOnline valuel	Modify	Data type
E001_AO001	0	3000	INT
E001_AI001	-2		INT

Name	IOnline valuel	Modify	∣ Data type ∣
E001_AO001	3000	3000	INT
E001_AI001	2999		INT


8. Initialization Method

This document explains the setting procedure from the factory default setting.

If the device settings have been changed from the factory default setting, some settings may not be applicable as described in this procedure.

8.1. Controller

To initialize the settings of the Controller, select *Clear All Memory* from the Controller Menu of the Sysmac Studio.

9. Revision History

Revision code	Date of revision	Revision reason and revision page
01	Jan. 31, 2013	First edition

OMRON Corporation Industrial Automation Company

Tokyo, JAPAN

Contact: www.ia.omron.com

Regional Headquarters OMRON EUROPE B.V. Wegalaan 67-69-2132 JD Hoofddorp The Netherlands Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ASIA PACIFIC PTE. LTD. No. 438A Alexandra Road # 05-05/08 (Lobby 2), Alexandra Technopark, Singapore 119967 Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON ELECTRONICS LLC One Commerce Drive Schaumburg, IL 60173-5302 U.S.A. Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower,
200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

Authorized Distributor:

© OMRON Corporation 2013 All Rights Reserved. In the interest of product improvement, specifications are subject to change without notice.

Cat. No. P524-E1-01

0213(-)