omROn

Manual Reset Limit Switch

A Series of Pull-reset Models Available

■ Ideal for elevators (EN81), escalators (EN115), and conveyors.
■ Positive opening mechanism Θ and double insulation \square approved by TÜV and BIA.

■ Approved by UL and CSA standards.

- Switzerland's SUVA approval pending.

■ Operates between $-30^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$.

- Safety Standards:
- Conformity:

Machinery Directive Low Voltage Directive EN50047 EN1088

- Approved Standards

Slow-action Models

Agency	Standard	File No.
TÜV Rheinland	EN60947-5-1 (Positive opening approved.), EN81, EN115	R9451193
UL (see note 1)	UL508 CSA C22.2 No.14	E76675
BIA (see note 2)	GS-ET-15	1-conduit: 9505895 2-conduit: 9509914
SUVA (see note 2)	SUVA	1-conduit: 6013Z 2-conduit: 6012Z

Note: 1. CSA C22.2 No. 14 compliance was verified and approved by UL (Marked with (IL)).
2. Except for adjustable roller lever models.

Ordering Information

■ Model Number Legend

1. Conduit

1: Pg 13.5 (1-conduit)
2: $\quad \mathrm{G} 1 / 2$ (1-conduit)
3: 1/2-14NPT (1-conduit)
5: Pg13.5 (2-conduit)
6: G1/2 (2-conduit)
2. Built-in Switch

5: 1NC/1NO (Slow-action)
A: 2NC (Slow-action)

- List of Models

Actuator	Conduit size (see note 1)		1NC/1NO (Slow-action)		2NC (Slow-action)	
			Positive opening (see note 2)	Model	Positive opening (see note 2)	Model
Roller lever	1-conduit	Pg13.5	Θ	D4D-1520R	Θ	D4D-1A20R
		G1/2		D4D-2520R		D4D-2A20R
		1/2-14NPT		D4D-3520R		D4D-3A20R
	2-conduit	Pg13.5		D4D-5520R		D4D-5A20R
		G1/2		D4D-6520R		D4D-6A20R
Adjustable roller lever (See note 3)	1-conduit	Pg13.5	Θ	D4D-1521R	Θ	D4D-1A21R
		G1/2		D4D-2521R		D4D-2A21R
		1/2-14NPT		D4D-3521R		D4D-3A21R
	2-conduit	Pg13.5		D4D-5521R		D4D-5A21R
		G1/2		D4D-6521R		D4D-6A21R
Adjustable roller lever (with rubber roller) (See note 3)	1-conduit	Pg13.5	Θ	D4D-1527R	Θ	D4D-1A27R
		G1/2		D4D-2527R		D4D-2A27R
		1/2-14NPT		D4D-3527R		D4D-3A27R
	2-conduit	Pg13.5		D4D-5527R		D4D-5A27R
		G1/2		D4D-6527R		D4D-6A27R
Plunger \quad 为	1-conduit	Pg13.5	Θ	D4D-1531R	Θ	D4D-1A31R
		G1/2		D4D-2531R		D4D-2A31R
		1/2-14NPT		D4D-3531R		D4D-3A31R
	2-conduit	Pg13.5		D4D-5531R		D4D-5A31R
		G1/2		D4D-6531R		D4D-6A31R
Roller plunger \&	1-conduit	Pg13.5	Θ	D4D-1532R	Θ	D4D-1A32R
		G1/2		D4D-2532R		D4D-2A32R
		1/2-14NPT		D4D-3532R		D4D-3A32R
	2-conduit	Pg13.5		D4D-5532R		D4D-5A32R
		G1/2		D4D-6532R		D4D-6A32R
One-way roller arm lever (horizontal)	1-conduit	Pg13.5	Θ	D4D-1562R	Θ	D4D-1A62R
		G1/2		D4D-2562R		D4D-2A62R
		1/2-14NPT		D4D-3562R		D4D-3A62R
	2-conduit	Pg13.5		D4D-5562R		D4D-5A62R
		G1/2		D4D-6562R		D4D-6A62R
One-way roller arm lever (vertical)	1-conduit	Pg13.5	Θ	D4D-1572R	Θ	D4D-1A72R
		G1/2		D4D-2572R		D4D-2A72R
		1/2-14NPT		D4D-3572R		D4D-3A72R
	2-conduit	Pg13.5		D4D-5572R		D4D-5A72R
		G1/2		D4D-6572R		D4D-6A72R

Note: 1. It is recommended that Pg13.5 be used for Switches for Europe and 1/2-14NPT for North America.
2. The switches are marked with Θ indicating approval for the positive opening mechanism.
3. The adjustable roller lever models are approved by the EN ratings (TÜV Rheinland) but not by GS-ET-15 (BIA) and SUVA.

Specifications

- Ratings

Applicable Standards

TÜV and BIA (EN60947-5-1)

Utilization category	AC-15
Rated operating current $\left(\mathrm{l}_{\mathrm{e}}\right)$	2 A
Rated operating voltage $\left(\mathrm{U}_{\mathrm{e}}\right)$	400 V

UL (UL508/CSA C22.2 No.14)
A600

Rated voltage	Carry current	Current		Volt-amperes	
		Make	Break	Make	Break
120 VAC	10 A	60 A	6 A	7,200 VA	720 VA
240 VAC		30 A	3 A		
480 VAC		15 A	1.5 A		
600 VAC		12 A	1.2 A		

■ Characteristics

Degree of protection	IP65 (EN60947-5-1)
Life expectancy (see note)	Mechanical: 1,000,000 operations min. Electrical: 150,000 operations min.
Operating speed	$1 \mathrm{~mm} / \mathrm{s}$ to $0.5 \mathrm{~m} / \mathrm{s}$
Contact gap	$2 \times 2 \mathrm{~mm}$ min.
Operating frequency	30 operations/min
Rated frequency	$50 / 60 \mathrm{~Hz}$
Insulation resistance	$100 \mathrm{M} \Omega$ min. (at 500 VDC) between terminals of the same polarity, and between each terminal and non-current-carrying metal part
Contact resistance	$25 \mathrm{~m} \Omega$ max. (initial value)
Dielectric strength	$\mathrm{U}_{\mathrm{imp}} 4 \mathrm{kV}$ between terminals of the same polarity, between terminals of different polarity, and between each terminal and non-current-carrying metal part (EN60947-5-1)
Rated insulation voltage (U_{i})	400 V (EN60947-5-1)
Switching overvoltage	1,500 V max. (EN60947-5-1)
Pollution degree (operating environment)	3 (EN60947-5-1)
Short-circuit protective device (SCPD)	10 A , fuse type gl or gG (IEC269)
Conditional short-circuit current	100 A (EN60947-5-1)
Conventional enclosed thermal current (lthe)	10 A (EN60947-5-1)
Protection against electric shock	Class II (double insulation)
Vibration resistance	Malfunction: 10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$. Malfunction: $300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.
Ambient temperature	Operating: $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 95\% max.
Weight	Approx. 80 g (for D4D-1120R)

Note: Life expectancy values are calculated at an operating temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$, and an operating humidity of 40% to 70%. Contact your OMRON sales representative for more detailed information on other operating environments.

Operating Characteristics

1-conduit Models

Model	D4D-1520R D4D-2520R D4D-3520R D4D-1A20R D4D-2A20R D4D-3A20R	D4D-1521R D4D-2521R D4D-3521R D4D-1A21R D4D-2A21R D4D-3A21R (see note 1)	D4D-1527R D4D-2527R D4D-3527R D4D-1A27R D4D-2A27R D4D-3A27R (see note 2)	D4D-1531R D4D-2531R D4D-3531R D4D-1A31R D4D-2A31R D4D-3A31R	D4D-1532R D4D-2532R D4D-3532R D4D-1A32R D4D-2A32R D4D-3A32R	D4D-1562R D4D-2562R D4D-3562R D4D-1A62R D4D-2A62R D4D-3A62R	D4D-1572R D4D-2572R D4D-3572R D4D-1A72R D4D-2A72R D4D-3A72R
LF max.	6.37 N	5.59 N	5.39 N	10.79 N	10.79 N	7.35 N	7.85 N
LT max.	55°	55°	55°	4.5 mm	4.5 mm	7 mm	7 mm
PT1 max. (see note 3)	18° to 27°	18° to 27°	18° to 27°	2 mm	2 mm	4 mm	4 mm
PT2 (see note 4)	(44 ${ }^{\circ}$)	(44 ${ }^{\circ}$)	(44 ${ }^{\circ}$)	(2.9 mm)	(2.9 mm)	(5.2 mm)	(4.3 mm)
OP	---	---	---	$34 \pm 0.5 \mathrm{~mm}$	$44.4 \pm 0.8 \mathrm{~mm}$	$53 \pm 0.8 \mathrm{~mm}$	$27 \pm 0.8 \mathrm{~mm}$
$\begin{aligned} & \text { TT } \\ & \text { (see note 5) } \end{aligned}$	(70 ${ }^{\circ}$)	$\left(70^{\circ}\right)$	$\left(70^{\circ}\right)$	(6 mm)	(6 mm)	(9 mm)	(9 mm)
POF min. (see note 6)	19.61 N						
POT min. (see note 6)	50°	50°	50°	3.2 mm	3.2 mm	5.8 mm	4.8 mm

Note: 1. The operating characteristics of these switches were measured with the roller lever set at 30 mm .
2. The operating characteristics of these switches were measured with the roller lever set at 31 mm .
3. These PT1 values are possible when the NC contacts are OFF.
4. These PT2 values are possible when the NO contacts are ON (applicable to D4D- \square R models with 1NC and 1NO contact each).
5. Reference value.
6. POT (positive opening travel) and POF (positive opening force) are required values for positive opening.

2-conduit Models

Model	D4D-5520R D4D-6520R D4D-5A20R D4D-6A20R	$\begin{aligned} & \text { D4D-5521R } \\ & \text { D4D-6521R } \\ & \text { D4D-5A21R } \\ & \text { D4D-6A21R } \end{aligned}$	D4D-5527R D4D-6527R D4D-5A27R D4D-6A27R	D4D-5531R D4D-6531R D4D-5A31R D4D-6A31R	D4D-5532R D4D-6532R D4D-5A32R D4D-6A32R	D4D-5562R D4D-6562R D4D-5A62R D4D-6A62R	$\begin{aligned} & \text { D4D-5572R } \\ & \text { D4D-6572R } \\ & \text { D4D-5A72R } \\ & \text { D4D-6A72R } \end{aligned}$
LF max.	6.37 N	5.59 N	5.39 N	10.79 N	10.79 N	7.35 N	7.85 N
LT max.	55°	55°	55°	4.5 mm	4.5 mm	7 mm	7 mm
PT1 max. (see note 3)	18° to 27°	18° to 27°	18° to 27°	2 mm	2 mm	4 mm	4 mm
PT2 (see note 4)	(44 ${ }^{\circ}$	(44 ${ }^{\circ}$)	$\left(44^{\circ}\right)$	$(2.9 \mathrm{~mm})$	(2.9 mm)	(5.2 mm)	$(4.3 \mathrm{~mm})$
OP	---	---	---	$34 \pm 0.5 \mathrm{~mm}$	$44.4 \pm 0.8 \mathrm{~mm}$	$53 \pm 0.8 \mathrm{~mm}$	$27 \pm 0.8 \mathrm{~mm}$
$\begin{array}{\|l} \text { TT } \\ \text { (see note 5) } \end{array}$	(70 ${ }^{\circ}$)	(70 ${ }^{\circ}$)	(70 ${ }^{\circ}$	(6 mm)	(6 mm)	(9 mm)	(9 mm)
POF min. (see note 6)	19.61 N						
POT min. (see note 6)	50°	50°	50°	3.2 mm	3.2 mm	5.8 mm	4.8 mm

Note: 1. The operating characteristics of these switches were measured with the roller lever set at 30 mm .
2. The operating characteristics of these switches were measured with the roller lever set at 31 mm
3. These PT1 values are possible when the NC contacts are OFF.
4. These PT2 values are possible when the NO contacts are ON (applicable to D4D- \square R models with 1NC and 1NO contact each).
5. Reference value.
6. POT (positive opening travel) and POF (positive opening force) are required values for positive opening.

Nomenclature

Note: The D4D- \square R uses NBR.

Operation

- Contact Form

Model	Contact		Diagrams		Remarks
D4D- $\square 5 \square \mathrm{~N}$	1NC/1NO (slow-action)		$\begin{aligned} & 11-12 \\ & 23-24 \end{aligned}$		Only NC contact 11-12 has an approved positive opening mechanism. Terminals numbers 11-12 and 23-24 can be used as unlike poles.
D4D- \square A $\square \mathrm{N}$	2NC (slow-action)		$\begin{aligned} & 11-12 \\ & 21-22 \end{aligned}$	Stroke ON	NC contacts 11-12 and 21-22 have an approved positive opening mechanism. Terminal numbers 11-12 and 21-22 can be used as unlike poles.

Note: Terminals are numbered according to EN50013 and contacts are marked according to EN60947-5-1.

■ Positive Opening Mechanism

1NC/1NO Contact (Slow-action)

Only the NC contacts have a positive opening function.
When metal deposition occurs, the contacts are separated from each other by pushing in the plunger.

Conforms to EN60947-5-1 Positive Opening

2NC Contact (Slow-action)

Both NC contacts have a positive opening function.
When metal deposition occurs, the contacts are separated from each other by pushing in the plunger.

Conforms to EN60947-5-1 Positive Opening

Note: The switches are marked with " Θ " indicating approval for the positive opening mechanism.

Dimensions

Note: 1. All units are in millimeters unless otherwise indicated
2. Unless otherwise specified, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
3. The minimum number of screw threads is five when the Pg 13.5 conduit is used and four when the $\mathrm{G} 1 / 2$ conduit is used.

■ 1-conduit Models

Roller Lever

Adjustable Roller Lever

D4D-1521R

D4D-2521R
D4D-3521R
D4D-1A21R
D4D-2A21R D4D-3A21R

Adjustable Roller Lever (Rubber Roller Lever)

Plunger
D4D-1531R
D4D-2531R
D4D-3531R
D4D-1A31R
D4D-2A31R D4D-3A31R

Roller Plunger
D4D-1532R
D4D-2532R
D4D-3532R
D4D-1A32R
D4D-2A32R
D4D-3A32R

One-way Roller Arm Lever (Horizontal)

One-way Roller Arm Lever
(Vertical)
D4D-1572R
D4D-2572R
D4D-3572R
D4D-1A72R
D4D-2A72R
D4D-3A72R

■ 2-conduit Models

Roller Lever

Adjustable Roller Lever
D4D-5521R
D4D-6521R

D4D-5A21R

 D4D-6A21R

Adjustable Roller Lever (Rubber Roller Lever)

Plunger

Roller Plunger

One-way Roller Arm Lever
(Horizontal)
D4D-5562R D4D-6562R D4D-5A62R D4D-6A62R

One-way Roller Arm Lever (Vertical)

Levers

Refer to the following for the angles and positions of the watchdogs.

Roller Lever

(D4D- \square 20R)

Sealed Plunger
(D4D- $\square \square 31$ R)

One-way Roller Arm Lever (Horizontal)
(D4D-■ $\square 62$)

Adjustable Roller Lever (D4D- \square 21R)

Roller Plunger
(D4D- \square 32R)

One-way Roller Arm Lever (Vertical)
(D4D-■ \square 72R)

Adjustable Roller Lever (Rubber Roller Lever) (D4D- \square 27R)

Precautions

If the D4D- \square R is applied to an emergency stop circuit or safety circuit for prevention of injury, use the D4D- \square R model that has an NC contact equipped with a force-separation mechanism, and make sure that the D4D- \square R operates in the positive mode. Furthermore, secure the D4D- \square R with screws or equivalent parts that are tightened in a single direction so that the D4D- \square R cannot be easily removed. Then provide a protection cover for the D4D- \square R and post a warning label near the D4D- $\square \mathrm{R}$.
Ensure that the actuator is pushed into the lock position by, for example, setting up a dog. Not doing so may result in the actuator becoming unlocked and causing an accident.

When the Limit Switch locks due to a fault in the system, be sure to reset the Limit Switch manually before resupplying power after confirming the safety of the system.
Be sure to connect a fuse with a breaking current 1.5 to 2 times larger than the rated current to the Limit Switch in parallel in order to protect the Limit Switch from damage due to short-circuiting.
When using the Limit Switch for the EN ratings, use the gl or gG 10-A fuse.
Do not use the Limit Switch as a stopper.
Actuation of the Limit Switch over a long time may deteriorate parts of the Limit Switch and a releasing failure may result. Be sure to check the condition of the Limit Switch regularly.
When using the Limit Switch as a safety component, be sure to check the system design for both operational and circuit safety.

Correct Use

Operating Environment

The Limit Switch is intended for indoor use only. Using the Limit Switch outdoors may result in a malfunction.

Correct Tightening Torque

A loose screw may result in a malfunction. Be sure to tighten each screw to the proper tightening torque as shown below.

No.	Type	Torque
1	Terminal screw	0.59 to $0.78 \mathrm{~N} \cdot \mathrm{~m}$
2	Cover mounting screw	0.78 to $0.88 \mathrm{~N} \cdot \mathrm{~m}$
3	Head mounting screw	0.78 to $0.88 \mathrm{~N} \cdot \mathrm{~m}$
4	Lever mounting screw	1.57 to $1.77 \mathrm{~N} \cdot \mathrm{~m}$
5	Switch mounting screw (M4)	0.49 to $0.69 \mathrm{~N} \cdot \mathrm{~m}$
6	Connector	1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$ 1.37 to $1.77 \mathrm{~N} \cdot \mathrm{~m}$ (see note)
7	Cap screw	1.27 to $1.67 \mathrm{~N} \cdot \mathrm{~m}$

Note: This applies to the $1 / 2-14$ NPT connector.

Mounting

Fasten the Switch with two M4 Allen-head bolts and washers. Provide a stud with a diameter of $4^{-0.05 /}-0.15$ and a height of 4.8 mm max. at two places as shown below so that the Switch is firmly fixed at four points.

Mounting Holes/Studs

Standard 1-conduit

2-conduit

Changing the Head Direction

If the head direction has been changed, check the torque of each screw and make sure that the screws are free of foreign substances, and that each screw is tightened to the proper torque.

Wiring

- Do not connect the bare lead wires directly to the terminals but be sure to connect each of them by using an insulation tube and M3.5 round solderless terminals and tighten each terminal screw within the specified torque range.
- The proper lead wire is 20 to 14 AWG (0.5 to $2.5 \mathrm{~mm}^{2}$) in size.
- Do not touch the terminals while power is being supplied in order to avoid an electrical shock.

Perform wiring for the crimp terminals in the orientation shown below, so that they do not rest on the case or the cover.

Processing the Conduit Opening

Tighten the connector to a torque of 1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$ (1.37 to $1.77 \mathrm{~N} \cdot \mathrm{~m}$ if it is a $1 / 2-14 \mathrm{NPT}$). Excessive tightening torque may damage the casing. To satisfy IP65, apply sealing tape to the connector conduit. The diameter of the cable must be suited to the corresponding connector.
Insert a cap screw provided with the D4D- \square R into any unused conduit opening of the D4D- \square R and tighten the cap screw to a torque of 1.27 to $1.67 \mathrm{~N} \cdot \mathrm{~m}$.

Recommended Connector

Conduit size	Manufacturer	Model	Applicable cable diameter
G1/2	OMRON	SC-6	7.5 to 9.0 mm
	LAPP (see note 1)	ST-PF1/2 $5360-1002$	6.0 to 12.0 mm
	Ohm Denki (see note 2)	OA-W1609	7.0 to 9.0 mm
	LAPP (see note 1)	ST13.5 $5301-5030$	5.0 to 12.0 mm
1/2-14NPT	LAPP (see note 1)	ST-NPT1/2 $5301-6030$	6.0 to 12.0 mm

Note: 1. LAPP is a German manufacturer.
2. Ohm Denki is a Japanese manufacturer.

Maintenance and Repairs

The user must not maintain or repair equipment incorporating any D4D- \square R model. Contact the manufacturer of the equipment for any maintenance or repairs required.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

Cat. No. C103-E1-2A

