omROn

Weighing Meter

Highly Functional Weighing Meter with Easy-to-read LED

Easily programmable through the front panel or via RS-232C, RS-485, or RS-422.

- Programming with easy setup and calibration.

■ Load cell can be connected to a maximum of $20 \mathrm{mV} / \mathrm{V}$.

- Easy-to-use scaling function with the key programming method.
■ A wide range of Output Boards, including communications and linear boards.
- Tare function allows zero adjustment at the reference position.

(\subset (띠자
■ Load cell power supply of 100 mA at 10 VDC.
■ NEMA4/IP66 front panel.
■ Conforms to EMC standards, EN61010-1 (IEC1010-1).
■ UL/CSA approved.

Ordering Information

- Base Units

Model	Supply voltage	
	100 to 240 VAC	12 to 24 VDC
Basic Models These models provide a process value LED and front-panel control keys. Can be connected to available Output Board, or can be used for display only without an Output Board.	K3NV-LC1A	K3NV-LC2A
Set Value LED Models These models provide a process value LED, set value LED, and front-panel control keys. Can be connected to Relay Contact, Transistor, or Combination Output Boards.	K3NV-LC1C	K3NV-LC2C

Available Output Board Combinations

Output type	Output configuration	Output boards	Base units	
			Basic	Set Value LED Display
Relay contact	3 outputs: H, PASS, L (SPDT)	K31-C1	Yes	Yes
	5 outputs: HH, H, L, LL (SPST-NO), and PASS (SPDT)	K31-C2	Yes	Yes
	5 outputs: HH, H, L, LL (SPST-NC), and PASS (SPDT)	K31-C5	Yes	Yes
Transistor	5 outputs (NPN open collector)	K31-T1	Yes	Yes
	5 outputs (PNP open collector)	K31-T2	Yes	Yes
BCD (see note)	5-digit output (NPN open collector)	K31-B2	Yes	---
Linear	4 to 20 mA DC	K31-L1	Yes	---
	1 to 5 VDC	K31-L2	Yes	---
	$1 \mathrm{mV} / 10$ digits	K31-L3	Yes	---
	0 to 5 VDC	K31-L7	Yes	---
	0 to 10 VDC	K31-L8	Yes	---
Communication boards (see note)	RS-232C	K31-FLK1	Yes	---
	RS-485	K31-FLK2	Yes	---
	RS-422	K31-FLK3	Yes	---
Combination output and communication boards	BCD output + 5 transistor outputs (NPN open collector)	K31-B4	Yes	Yes
	4 to $20 \mathrm{~mA}+5$ transistor outputs (NPN open collector)	K31-L4	Yes	Yes
	1 to $5 \mathrm{~V}+5$ transistor outputs (NPN open collector)	K31-L5	Yes	Yes
	$1 \mathrm{mV} / 10$ digits +5 transistor outputs (NPN open collector)	K31-L6	Yes	Yes
	0 to 5 VDC + 5 transistor outputs (NPN open collector)	K31-L9	Yes	Yes
	0 to 10 VDC + 5 transistor outputs (NPN open collector)	K31-L10	Yes	Yes
	RS-232C + 5 transistor outputs (NPN open collector)	K31-FLK4	Yes	Yes
	RS-485 + 5 transistor outputs (NPN open collector)	K31-FLK5	Yes	Yes
	RS-422 + 5 transistor outputs (NPN open collector)	K31-FLK6	Yes	Yes

Note: For details, refer to the Communication Operation Manual.

Model Number Legend:

Base Units and Output Boards can be ordered individually or as sets. Refer to the Available Output Board Combinations table on pagez

Base Units

K3NV - $\frac{\square}{1} \frac{\square}{2} \frac{\square}{3} \frac{\square}{4}$

1, 2. Input Sensors Codes

LC: Load cell input
3. Supply Voltage

1: 100 to 240 VAC
2: 12 to 24 VDC
4. Display

A: Basic
C: Set Value LED Display

Output Boards

Base Units with Output Boards

Note: These output types are available on Basic Models only.

5, 6, 7, 8. Output Type Codes

C1: 3 comparative relay contact outputs (H, PASS, L: SPDT)
C2: 5 comparative relay contact outputs (HH, H, L, LL: SPSTNO; PASS: SPDT)
C5: 5 comparative relay contact outputs (HH, H, L, LL: SPSTNC; PASS: SPDT)
T1: 5 comparative transistor outputs (NPN open collector)
T2: 5 comparative transistor outputs (PNP open collector)
B2: BCD output (NPN open collector) (see note)
B4: BCD output +5 transistor outputs (NPN open collector)
L1: Linear output (4 to 20 mA) (see note)
L2: Linear output (1 to 5 VDC) (see note)
L3: Linear output ($1 \mathrm{mV} / 10$ digits) (see note)
L4: Linear output, 4 to $20 \mathrm{~mA}+5$ transistor outputs (NPN open collector)
L5: Linear output, 1 to $5 \mathrm{~V}+5$ transistor outputs (NPN open collector)
L6: Linear output, $1 \mathrm{mV} / 10$ digits +5 transistor outputs (NPN open collector)
L7: Linear output, 0 to 5 VDC (see note)
L8: Linear output, 0 to 10 VDC (see note)
L9: Linear output, 0 to 5 VDC +5 transistor outputs (NPN open collector)
L10: Linear output, 0 to 10 VDC +5 transistor outputs (NPN open collector)
FLK1: Communication RS-232C (see note)
FLK2: Communication RS-485 (see note)
FLK3: Communication RS-422 (see note)
FLK4: RS-232C +5 transistor outputs (NPN open collector)
FLK5: RS-485 + 5 transistor outputs (NPN open collector)
FLK6: RS-422 +5 transistor outputs (NPN open collector)

Specifications

■ Ratings

Supply voltage	100 to 240 VAC (50/60 Hz); 12 to 24 VDC
Operating voltage range	85% to 110% of supply voltage
Power consumption (see note)	15 VA max. (max. AC load with all indicators lit) 10 W max. (max. DC load with all indicators lit)
Sensor power supply	100 mA at $10 \mathrm{VDC} \pm 5 \%$
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) between external terminal and case. Insulation provided between inputs, outputs, and power supply.
Dielectric withstand voltage	2,000 VAC for 1 min between external terminal and case. Insulation provided between inputs, outputs, and power supply.
Noise immunity	$\pm 1,500 \mathrm{~V}$ on power supply terminals in normal or common mode $\pm 1 \mu \mathrm{~s}, 100 \mathrm{~ns}$ for square-wave noise with 1 ns
Vibration resistance	Malfunction: 10 to $55 \mathrm{~Hz}, 0.5-\mathrm{mm}$ for 10 min each in X, Y, and Z directions Destruction: 10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ for 2 hrs each in X, Y, and Z directions
Shock resistance	Malfunction: $98 \mathrm{~m} / \mathrm{s}^{2}$ (10G) for 3 times each in X, Y, and Z directions Destruction: $294 \mathrm{~m} / \mathrm{s}^{2}$ (30G) for 3 times each in X, Y, and Z directions
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (with no icing) Storage: $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 25\% to 85\% (with no condensation)
Ambient atmosphere	Must be free of corrosive gas
EMC	
Approved standards	UL508, CSA22.2; conforms to EN50081-2, EN50082-2, EN61010-1 (IEC1010-1); conforms to VDE106/part 100 (Finger Protection) when the terminal cover is mounted.
Weight	Approx. 400 g

Note: An Intelligent Signal Processor with DC supply voltage requires approximately 1 A DC as control power supply current the moment the Intelligent Signal Processor is turned on. Do not forget to take this into consideration when using several Intelligent Signal Processors. When the Intelligent Signal Processor is not in measuring operation (e.g., the Intelligent Signal Processor has been just turned on or is operating for startup compensation time), the display will read "חロחก" and all outputs will be OFF.

Input/Output Ratings

Relay Contact Output
(Incorporating a G6B Relay)

Item	Resistive load ($\cos \phi=1)$	Inductive load ($\cos \phi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$)
Rated load	5 A at 250 VAC ; 5 A at 30 VDC	1.5 A at $250 \mathrm{VAC}, 1.5 \mathrm{~A}$ at 30 VDC
Rated carry current	5 A max. (at COM terminal)	
Max. contact voltage	380 VAC, 125 VDC	
Max. contact current	5 A max. (at COM terminal)	
Max. switching capacity	1,250 VA, 150 W	375 VA, 80 W
Min. permissible load (P level, reference value)	10 mA at 5 VDC	
Mechanical life	50,000,000 times min. (at a switching frequency of 18,000 times/hr)	
Electrical life (at an ambient temperature of $23^{\circ} \mathrm{C}$)	100,000 times min. (at a rated load switching frequency of 1,800 times/hr)	

Transistor Output

Rated load voltage	12 to $24 \mathrm{VDC}+10 \% /-15 \%$
Max. load current	50 mA
Leakage current	$100 \mu \mathrm{~A}$ max.

BCD Output

I/O signal name		Item	Rating
Inputs	REQUEST, HOLD, MAX, MIN, RESET	Input signal	No-voltage contact input
		Input current with no-voltage input	10 mA
	Signal level	ON voltage: 1.5 V max. OFF voltage: $3 \mathrm{~V} \mathrm{min}$.	
Outputs	DATA, POLARITY, OVERFLOW, DATA VALID, RUN	Rated load voltage	12 to $24 \mathrm{VDC}+10 \% /-15 \%$

Note: Logic method: negative logic
Linear Output

Item	4 to 20 mA	1 to 5 V	$1 \mathrm{mV} / 10$ digits (see note)
Resolution	4,096		
Output error	$\pm 0.5 \%$ FS		$\pm 1.5 \%$ FS
Permissible load resistance	600Ω max.	500Ω min.	$1 \mathrm{~K} \Omega \mathrm{~min}$.

Note: For the $1 \mathrm{mV} / 10$-digit output, the output voltage changes for every 40 to 50 increment in the display value.
■ Communications

Item	RS-232C, RS-422	RS-485
Transmission method	4-wire, half-duplex	2-wire, half-duplex
Synchronization method	Start-stop synchronization	
Baud rate	1,200/2,400/4,800/9,600/19,200/38,400 bps	
Transmission code	ASCII (7-bit)	
Communications	Write to K3NV	Comparative set value, scaling value, remote/local programming, forced zero control, reset control of maximum/minimum values, and other setting mode items excluding communications conditions.

For details, refer to Communication Operation Manual.

■ Characteristics

Input signal	DC voltage
A/D conversion method	Double integral method
Sampling period	50 Hz : 12.5 times/s; 60 Hz : 15 times/s (selectable)
Display refresh period	Sampling period (sampling times multiplied by number of averaging times if simple average processing is selected.)
Max. displayed digits	5 digits (-19999 to 99999)
Display	7-segment LED
Polarity display	"-" is displayed automatically with a negative input signal.
Zero display	Leading zeros are not displayed.
Scaling function	Programmable with front-panel key inputs (range of display: -19999 to 99999). The decimal point position can be set freely.
HOLD function	Maximum hold (maximum data) Minimum hold (minimum data)
External controls	HOLD: (Process value held) RESET: (Maximum/Minimum data reset) ZERO: (Forced zero)
Comparative output hysteresis setting	Programmable with front-panel key inputs (1 to 9999).
Other functions	Variable linear output range (for models with linear outputs only) Remote/Local processing (available for communications output models only) Maximum/Minimum value data reset with front panel keys Tare (forced-zero) set with front panel keys Averaging processing function (simple or moving average) Startup compensation time (0.0 to 99.9 s) Comparative output pattern selection Security Field calibration
Output configuration	Relay contact output (3 or 5 outputs) Transistor output (NPN and PNP open collector), BCD (NPN open collector) Parallel BCD (NPN open collector) + transistor output (NPN open collector) Linear output (4 to $20 \mathrm{~mA}, 1$ to 5 V) + transistor output (NPN open collector) Communication functions (RS-232C, RS-485, RS-422) Communication functions (RS-232C, RS-485, RS-422) + transistor output (NPN open collector)
Delay in comparative outputs (transistor output)	400 ms max.
Enclosure ratings	$\begin{array}{ll}\text { Front panel: } & \text { NEMA4 for indoor use (equivalent to IP66) } \\ \text { Rear case: } & \text { IEC standard IP20 } \\ \text { Terminals: } & \text { IEC standard IP00 }\end{array}$
Memory protection	Non-volatile memory (EEPROM) (possible to rewrite 100,000 times)

Measuring Ranges

Input range		Measuring range	Input impedance	Reliability (see note 2)	Instantaneous overload (30 seconds)
DC voltage	R	0.00 to 199.99 mV	$10 \mathrm{M} \Omega \mathrm{min}$.	$\pm 0.1 \% \mathrm{rdg} \pm 5$ digit max.	$\pm 200 \mathrm{~V}$
	\square	0.000 to 19.999 mV	$10 \mathrm{M} \Omega \mathrm{min}$.	$\pm 0.1 \% \mathrm{rdg} \pm 5$ digit max.	$\pm 200 \mathrm{~V}$
	$\boxed{ }$	$\pm 100.00 \mathrm{mV}$	$10 \mathrm{M} \Omega \mathrm{min}$.	$\pm 0.1 \% \mathrm{rdg} \pm 3$ digit max.	$\pm 200 \mathrm{~V}$

Note: 1. The "rdg" stands for "reading value."
2. The accuracy is guaranteed at the ambient temperature of $23 \pm 5^{\circ} \mathrm{C}$.

The reliability becomes $\pm 0.1 \%$ FS for values smaller than 10% of the maximum input value for any input range.

■ Load Cell Connection Example

Nomenclature

Name	Functions
1. SV display	Displays the set value or parameter. Available for Set Value LED Models only.
2. PV display	Displays the process value in addition to the max./min. value or parameter.
3. Comparative output status indicators	Displays the status of comparative output.
4. SV display status	Indicates which comparative set value is currently on the SV display.
5. ESC Key	Used to return to the RUN mode from the Setting Protect, or Maintenance mode. The process value, maximum value, or minimum value to be displayed can be selected.
6. Mode Key	Used to enter the Setting mode. Used to allow the PV display to indicate set values sequentially. Available for Basic Models only. Used to indicate set values sequentially on the SV display. Available for Set Value LED Models only.
7. Status indicators	HOLD: Lit when HOLD input is ON. MAX: \quad Lit when the maximum value is indicated on the PV display. MIN: ZERO: when the minimum value is indicated on the PV display. Zit when the forced zero function is activated. PROG: Lit or flashes while parameters are being set.
8. Teaching indicator	Lit when the teaching function is enabled and flashes when the Intelligent Signal Processor is in teaching operation.
9. RESET/TEACH Key	The forced zero, maximum value, and minimum value are reset by pressing this key. Teaching is available when the teaching function is enabled.
10. Up Key and Shift Key	The digit being set is scrolled by pressing the Shift Key. The set value increases by one whenever the Up Key is pressed.

Operation

－Setting Procedures

The K3NV has four modes：RUN mode for normal operations，Setting mode for initial parameter input，Protect mode for lock－out configuration， and Maintenance mode for initializing set values and user calibration．The parameters that are accessible on any individual K3NV will vary depending on the Output Board installed．Refer to the K3NV Operation Manual for details．
RUN Mode：Remains in this mode under normal operation．
The process value or the max．$/ \mathrm{min}$ ．value can be monitored．
Using the front panel keys，the comparative set value can be changed and forced－zero reset or max．／min．values reset can be performed．
Setting Mode：Used for making initial settings．
Includes four menus（Set value（5u5EL），scaling（5LRLE），setup（5ELLIP），option（FPL））and the output test．
Protect Mode：
Maintenance Mode：Used for initializing set values and user calibration of the inputs．
The user calibration is valid for selected input ranges．

5u5Et－Program set values
5u． HH Enter set value HH
Su．H Enter set value H
Su．L Enter set value L
Suli Enter set value LL
5LRIE－Display scaling
EnP．己 Enter signal level for scaling point \＃2
［15．2 Enter display reading for scaling point \＃2
－nt．：Enter signal level for scaling point \＃1
םSP． 1 Enter display reading for scaling point \＃1
dELP Select decimal point
5EtLiP－Program input range／Serial communications
En在 Specifying input range
FrE Select the supply frequency to eliminate inductive noise
U四mo Enter the unit no．for the host
bry Select the baud rate
LEn Select the word bit length
5bit Select the stop bits
Prty Select the parity bits
GPt－Supplementary settings related to display or control
Pu Set for averaging process value
SLLIE Set startup compensation time
Hus Enter hysteresis value
［国㨁 Select the output pattern
L5EL．H Enter the upper limit（H）of linear output range
L5EL． 1 Enter the lower limit（L）of linear output range
r Select the remote／local programming
LESL－Generating simulated input for testing the output function

Parameters

Scaling 5L

The Intelligent Signal Processor converts input signals into desired physical values.
INPUT2: Any input value
DISPLAY2: Displayed value corresponding to INPUT2
INPUT1: Any input value
DISPLAY1: Displayed value corresponding to INPUT1

Average Processing Rレル

The average processing function stabilizes displayed values by averaging the corresponding analog input signals that fluctuate dynamically or reducing the noise in the input signals.

Startup Compensation Time 5t-ñe

The startup compensation time parameter keeps the measurement operation from sending an unnecessary output corresponding to instantaneous, fluctuating input from the moment the K3NX is turned ON until the end of the preset period.
The compensation time can be set in a range from 0 to 99.9 seconds as the waiting time until the devices subject to measurement become stable after the startup of the power supply.

Hysteresis $\mathrm{H}^{\mathrm{H} 5}$

The hysteresis of comparative outputs can be set to prevent the chattering of comparative outputs. Refer to page $T P$ for more details.

Output Pattern Selection CEDUL

The patterns of comparative output are selectable according to the level change. Select the pattern according to the application.

Level Output

Note: The following setting conditions must be satisfied, otherwise no zone output will turn ON correctly. $\mathrm{LL}<\mathrm{L}<\mathrm{H}<\mathrm{HH}$
Linear Output Range L 5 E t
A linear output range can be set as required. A value corresponding to the maximum output value and that corresponding to the minimum output value can be set.

Remote/Local Selection rebl
Select remote programming when performing all settings through the host devices and select local programming when performing settings through key operation.

■ External Connections

Terminal Arrangement

Terminal Numbers

Note: Terminals 7 to 13 are connected internally.

Input Unit

Note: Terminals 7 to 13 are connected internally.
When inputting the external control signals through the open collector:

Transistor Inputs:
ON: Residual voltage must be 3 V max. OFF: Leakage current must be 1.5 mA max. The switching capacity must be 20 mA or greater.
When the external signal input is short-circuited, a voltage of approximately 5 V will be applied to between the terminals 5 to 7 and the COM terminal, and a current of approximately 18 mA (nominal value) will flow.

LC: Load Cell Input

Output Unit

K31-C1: Relay (3 Outputs)

K31-C5: Relay (5 Outputs)
Outputs (5 A max. at 250 VAC)

K31-T2: Transistor (PNP Open Collector)

K31-L1, L2, L3,-L4, -L5, -L6, -L7, -L8, -L9,
-L10: Linear
(Terminals 21 to 26 are provided only on K31-L4, -L5, -L6, -L9, -L10.)

L1, L4: 4 to 20 mA
L2, L5: 1 to 5 V
L3, L6: $1 \mathrm{mV} / 10$ digit
L7, L9: 0 to 5 VDC L8, L10: 0 to 10 VDC

Outputs (50 mA max. at 12 to 24 VDC)

| HH | H | PASS | L | LL | COM |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

K31-C2: Relay (5 Outputs)

K31-T1: Transistor (NPN Open Collector)

K31-B2, -B4: BCD (NPN Open Collector)
(Terminals 32 to 36 are provided only on K31-B4.)

K31-FLK1: RS-232C

K31-FLK2, -FLK5: RS-485
(Terminals 21 to 26 are provided only on K31-FLK5.)

- D-sub 37P Connectors for BCD output (attachment) Plug: XM2A-3701
Hood: XM2S-3711
- D-sub 25P connectors for RS-232C output (K31-FLK1) (order separately)
Plug: XM2A-2501
Hood: XM2S-2511
- D-sub 9P connectors for RS-422 output (K31-FLK3 and

K31-FLK6) (order separately)
Plug: XM2A-0901
Hood: XM2S-0911

- D-sub 9P connectors for RS-232C output (K31-FLK4) (order separately)

Plug: XM2D-0901
Hood: XM2D-0911

K31-FLK3, -FLK6: RS-422
(The right connector is provided only on K31-FLK6)

K31-FLK4: RS-232C + Transistor (NPN Open Collector)
Output NPN Tr. (50 mA max. at 12 to 24 VDC)

■ Output Operation Timing in RUN Mode (Relay or Transistor Outputs)

The following timing chart is for a 5-comparative Output Board when the standard output pattern is selected.

Note: The hysteresis value set in setting mode will be applied to all set values.

BCD Output Timing Chart

A request signal from an external device (such as a Programmable Controller) is required to read BCD data.

Single Sampling Data Output

Approximately 30 ms after the REQ signal rises, a sample is taken and the DATA VALID signal is output. Read the data when the DATA VALID signal is ON.
The DATA VALID signal will turn OFF in 40 ms , and then in 16 ms , the data will go OFF.
Models with a BCD output have an open collector output configuration so that wired-OR connection is possible.

DATA (incl. POL and OVER) and DATA VALID are wired-OR processed.
The RUN, HH, H, PASS, L, and LL signals are always output regardless of the status of the REQ signal. Do not OR-wire these signals.

*The period between the DATA VALID signal and the REQ signal should be no less than 20 ms max.

Continuous Data Output

The K3NV outputs each measurement at an interval of 64 ms when a REQ signal is ON continuously.
If the HOLD signal is ON at the moment the DATA output is switched from data 1 to data 2 or vice versa, the output BCD data will be either data 1 or data 2 according to the timing of the HOLD signal. However, output data will never below.

Block Diagram

Installation

■ Example of Connection to Programmable Controller

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Precautions

- Be careful not to touch any terminals, otherwise you may receive an electric shock.
- Please do not disassemble the product nor touch the internal components of the product, otherwise you may receive an electric shock.
- Be sure that the power supply voltage is within the rated range.
- Do not use the Intelligent Signal Processor in locations with flammable gas or combustible substances.
- Be sure to wire the terminals correctly by checking the terminal names.
- Be sure that the terminal screws are tightened securely when wiring.
Mounting
Recommended panel thickness is 1 to 3.2 mm .

Attach the mounting bracket on the left and right sides of the Intelligent Signal Processor as shown in the illustration above and gradually tighten each screw evenly in turn by considering the balance of the tightening force until the ratchets start slipping without being further tightened.
Mount the Processor as horizontally as possible.
Never use the Processor in locations where corrosive gas (particularly sulfur or ammonia gas) is generated.
As much as possible avoid use of the Processor in a location subject to severe shock or vibration, excessive dust, or excessive moisture. Select an indoor mounting location where the Intelligent Signal Processor is at the rated temperature and humidity and free from direct sunlight.
Separate the Processor from machines generating high-frequency noise, such as high-frequency welding machines and high-frequency sewing machines.

Operation

A Processor model with a Relay Contact or Transistor Output Board may not output any alarm signal normally if the model has an error. It is recommended that an independent alarm device be connected to the model.
The parameters are factory-set so that the Processor will operate normally. The settings of the parameters may be changed according to the application.

Unit Label (Attached)
No product is shipped with the unit label attached. Select a unit label from the sheet provided and attach it to the Processor.

A	A	mA	mA	V
V	mV	mV	W	KW
VA	KVA	var	Kvar	Ω
${ }^{\circ} \mathrm{C}$	F	K	Hz	rpm
m	mm	cm	$\mu \mathrm{m}$	Km
ℓ	Kl	t	TON	$2 \times$
m^{3}	cm^{3}	mm^{3}	Kg	g
mg	$\mathrm{Kg} / \mathrm{m}^{3}$	g/cm ${ }^{3}$	$\mathrm{m}^{3} / \mathrm{Kg}$	$\mathrm{m} / \mathrm{s}^{2}$
G	N	mmHg	mmH2O	Kgl/m²
Kgf/mm	J	KJ	Kgf-cm	$\mathrm{gf}-\mathrm{cm}$
PS	hp	cal	Kcal	Kg/h
t/h	Kg/s	$\mathrm{m} / \mathrm{min}$	$\mathrm{m}^{3} / \mathrm{h}$	m / s
l/s	ℓ / min	ℓ / h	$\mathrm{m} / \mathrm{min}$	mm / s
m/s	\%	dB	ϕ-mm	SCCM
sec	ms	min	counts	$\times 10$
$\times 100$	$\times 1000$	pH	ppm	pcs
deg	cP	cSt	$\mathrm{K} \Omega$	$\mathrm{M} \Omega$
KHZ	rps			
kV	s	m	cm	rad
S	S	L	kL	L/s
L/min	L/h	kN	mN	Pa
kPa	mPa	$\mathrm{N} \cdot \mathrm{m}$	kN•m	$\mathrm{mN} \cdot \mathrm{m}$
kg.m	Ix	cps	-	rph
r/s	$\mathrm{r} / \mathrm{min}$	r/h	min^{-1}	h^{-1}
				h.min.s
mins. 1 10s			omron	

```
ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
```

Cat. No. N085-E1-1A In the interest of product improvement, specifications are subject to change without notice.

[^0]
[^0]: OMRON Corporation
 Supervisory Control Devices Division
 28th FI., Crystal Tower BIdg.,
 1-2-27, Shiromi, Chuo-ku,
 Osaka 540-6028 Japan
 Printed in Japan
 Phone: (81)6-949-6035 Fax: (81)6-949-6069
 0698-1M (1297) (A)

